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Preface 

All over the world, we can marvel at numerous structures that document the 
architectural prowess of their respective dates of origin. But they also demonstrate 
how further development of the existing state of the art is jointly promoted by the 
expertise, abilities, and experience of scientists, engineers, architects, and 
craftsmen. In this way, planning documents and illustrative examples were created 
for the next generations. 

 

Also Monsieur de Coulomb's (1736-1806) classical earth pressure theory has been 
repeatedly modified and adapted to newer findings. 

But in our digital and global world, planning documents must be exactly repro-
ducible, and empirical knowledge must be included in the basic planning of experts. 

The new earth pressure teachings are intended as a contribution to this deve-
lopment, and in particular to help prevent future damage events in structural and 
civil engineering. 

This aim is supported by the "Studie Erddruck" ("Study on earth pressure"), the book 
"Die neue Erddrucklehre auf den Grundlagen der reinen Physik", ISBN 03831-122-
978-3-5 ("New earth pressure theory based on pure physics"), and various technical 
papers on the subject. This concise version of the book has been supplemented with 
numerous updated calculation examples. Study and book can be downloaded free 
of charge from www.erddruck.de. 

 

Wide discussions about the new findings in earth pressure teachings are an im-
portant step towards obtaining safe planning documentation. 

The author 
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1     Introduction 

1.1   General information on the present state of affairs 
Repeatedly, we hear reports in the media about damage to structures subjected to soil 
pressures, such as supporting walls, underground pipes, and tunnel ceilings. Similarly, reports 
about landslides are increasing dramatically. Apart from the high material damage costs of 
these events, quite often there are casualties with severe of fatal injuries. Particularly note-
worthy in 2009 were the collapse of the Historic Archive in Cologne and the gigantic rockslide 
in Nachterstedt. More recently, we heard about subsidence of the Autobahn A 20 near 
Triebsees, and the bumpy road in Husum. On the Autobahn in Geiselwind, the new noise 
protection embankments must be demolished and rebuilt over a distance of 1.3 km. After 
such damage incidents, the question of who is to blame arises very quickly, and there is talk 
about botched up construction. 
 
However, the 'culprits' usually had simply worked according to the relevant German rules 
and regulations, which are demonstrably faulty. Although the application of standards, rules, 
and regulations is not mandatory, they are expressly demanded from planners and con-
struction companies in the specifications and/or construction contracts. Moreover, the 
current earth pressure teachings and Eurocode 7 are viewed as generally accepted enginee-
ring practice. Consequently, they must be observed. As a result, their discrepancies 
contribute decisively towards under-dimensioning of earth embankments and structures 
subjected to soil pressures. 
 
 
1.2   Purpose and structure of this work 
Findings about soil behaviour in free nature and die predictability of soil properties resulted 
in an investigation of the discrepancies in current earth pressure teachings. Contradictions 
between natural soil behaviour and the calculation requirements were found, and by 
applying basic physics they were proved to be wrong. However, the accumulation of these 
discrepancies makes it impossible to simply correct the writings of the teachings. In order to 
make comparisons between the current and new earth pressure teachings, new terms and 
symbols have been introduced. 
 

2.0 Earth pressure, innovations in the calculation defaults 
3.0 Earth pressure, more detailed calculation examples 
4.0 Summary 

Due to these changes in the calculation defaults, it would be possible to minimise damage in 
civil engineering projects. 
 
 
1.3   Material and methods 
To illustrate the current earth pressure teachings, writings from the Center for Geotechnics 
at the Technical University Munich (TUM) were used. 
 
Own experience and know-how led to the development of a new procedure for the deter-
mination of soil properties. Accordingly, two different force systems occur in soils. They de-
pend on the center of gravity in the earth wedge, and lead to different calculation results. 
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2.   Earth pressure – innovations in calculation defaults 

2.1    Different force systems in soils 
The realization that two different force systems exist for determining earth pressure 
is highly significant for earth pressure teachings. This is shown in the operation of an 
hourglass. 
If sand is filled into the lower container of the hourglass, a bulk cone is formed on the 
horizontal base. The sand in the cone behaves inactively and only changes its shape 
under the influence of an external force. Its center of gravity is located in the lower 
third of its height h. If the hourglass is rotated through 180°, the sand (restrained by 
the container wall) adopts the shape of a 'cone standing on its point'. Its center of 
gravity now lies in the cone's upper third. Due to the energy imparted to the sand by 
rotating the hourglass, it becomes active and is able to create horizontal forces. If the 
sand were given free room, it would return to its lying wedge shape. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 shows unequal soil bodies and earth forces in an hourglass. 
 
Consequently, there are two different calculation methods for force determination, 
which are connected with the location of the respective center of gravity. To 
distinguish them, the inactive wedge shape will be called 'lying' and wedge standing 
on its head will be called 'standing'. In both wedge shapes, horizontal forces are 
generated purely by the soil weight resting on the friction/inclination plane under 
inclination angle β. This reveals that no horizontal earth stresses occur in the soil 
body's basal plane – whether lying or standing – as specified in the rules and 
standards of the current teachings. 
 
 
2.2   Calculability of soil properties 
Another important innovation for earth pressure teachings is the calculability of soil 
properties. Hereby, it is irrelevant whether the soils are in the dry, moist or wet state, 
or are 'under water' (groundwater). By means of their friction/inclination angle β, all 
soil types can be classified steplessly in the 'semicircle of soil types'. Also the 
classification according to soil types, homogeneous areas, and geological naming of 
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soils (DIN 4023) can be dispensed with, as well as the previous use of empiric soil 
densities, angles, and other soil characteristics. 
 
The calculation of soil properties such as density, friction angle, and load bearing 
capacity is based on the recognition that soils are decomposition products of diffe-
rent solid rock types. Special considerations must be given to soils with organic and 
metallic admixtures. 
Due to the different amounts of water absorbed, the properties of soils in free nature 
can vary widely. By removing the water from the soil, one obtains a dry mass, which 
is easier to analyse. If an intact soil sample is weighed before and after drying, the 
amount of water absorbed by the soil is known, and therefore also the weight of the 
pore structure with embedded solid particles, i.e. the soil's dry density. From this, it 
can be derived that every soil type consists of a solid material portion Vf and a pore 
portion Vl, whereby only the pore portion can absorb water Vw. Furthermore, it is 
observable that the solids determine the dry density and volume Vf1 + Vl = Vp of the 
total volume. 
Due to the plausible decay of rocky ground, it can be assumed that the solids volume 
Vf1 is part of the rocky ground. If one takes hard granite with its density of ptg90 = 3,0 
t/m³ → γ = 29,4 kN/m³ as the limit value for all solids, this rock type will take top 
position in the scale of soil types. Based on their density, other original rocks must 
be classified below that of granite. 
 
The conversion of granite rock into a decomposition product/soil type is under-
standable, if one takes granite as pore-free, and equates its solids volume Vf with the 
cube volume Vp = Vf = 1,00 m³. In the example, the granite must be crushed so far 
that a volume increase in the amount of width Δb = 0,70 m occurs in the cube. 
Accordingly, the new product's properties can be determined via standardization 
(see Fig. 3). 
 

 
 
 
 
 
 
 
 
 
Fig. 2 

 
 
 
 
 
 
 
 
 

                                                     Fig. 3 

Fig. 2 shows the solids volume Vf90 = 1,00 m³ and the pore volume Vl = 0,70 m³. 
Fig. 3 shows the volume of the new product after standardization.  
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Soil in the dry state: 
Solids volume Vf' = Vf90 / (bb ∙ h ∙ a) = 1,00 / (1,70 ∙ 1,00 ∙ 1,00) = 0,588 m³ 
Pore volume Vl' = Vp - Vf' = 1,00 - 0,588 = 0,412 m³ 
Material density ptg' = Vf' ∙ ptg90 = 0,588 ∙ 3,000 = 1,764 t/m³ 
 
It was also found that the ratio of solids volume to pore volume corresponds to the 
tangent of friction angle/inclination angle ß. Because an inclination angle ß90 = 90° 
must be applied for pore-free granite, the angle for the crushed material is calculated 
as follows: 

Inclination angle ß  → tan Vf / Vl = 0,588 / 0,412 = 1,427 → angle ß = 55,0° 
 
As shown above, hard granite takes the top position in the scale of soil types. The 
decomposition product at the end of the scale is described as 'primordial dust'. Its 
ratio Vf / Vl = 0,01 / 0,99 = 0,010 creates angle ß = 0,58° ~ 0,6°. The primordial dust's 
dry density is then calculated from the solids volume Vf = 0,01 m³, resulting in dry 
density ptg = 0,01 ‧ 3,00 = 0,030 t/m³. 
 
Note: 
For calculation reasons, the new earth pressure teachings use the dimension t/m³ 
for soil densities. The multiplication of density ptg (pig, png) with gravitational force 
g = 9,807 m/s² is done subsequently when determining the force. 
 
 
2.3   Properties of wet and moist soils 
If a dry soil absorbs water, its density and its inclination angle are changed. While soil 
density increases, the inclination angle ßt flattens and changes to angle ßi or ßn. 
Opposed to dry soil is the wet soil (n), whose pore structure can be filled completely 
with water. This changes volume Vl into volume Vln. Via the amount of absorbed 
water, moist soils (i) are aligned between the poles with volume Vli. In order to 
introduce water volume Vw into the angle calculation, the fictive solids volume Vfn = 
Vln ∙ pwg / ptg or Vl /3 is required, whereby water density is specified with pwg = 
1,00 t/m³ or ptg90 /3. 
 
Using the example of dry soil with solids volume Vf = 0,588 m³, density ptg' = 1,764 
t/m³, and angle ßt = 55,0° the changes to the characteristic values due to complete 
filling of the pores Vl = Vn = 0,412 m³ with water are shown. The fictive solids volume 
is Vfn = Vl /3 = 0,412 / 3 = 0,137 m³. The volumes are shown in Figs. 4 and 5. 
 
Wet density png = ptg + Vn ∙ pwg = 1,764 + 0,412 ∙ 1,000 = 2,176 t/m³ 
Inclination angle ßn  → tan Vf / (Vl + Vl /3) = 0,588 / (0,412 + 0,412 /3) = 1,070 
Inclination angle ßn = 47,0°  
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Fig. 4 shows the expansion of the soil body in Fig. 5 by volume Vfn of the water and the 
formation of inclination angle ßn. 
Fig. 5 shows the expansion of the soil cube by fictive volume Vfn. 
 
Shown in Fig. 6 are the changes to densities, angles, and forces due to complete filling 
of the soil pores with water. A series of tests carried out with different soils confirmed 
the validity of the calculated soil properties (see book, Chapter 3). 
 

 
Fig. 6 shows the increase of earth pressure force due to water absorbance. 
 
 
2.4   Earth block, its forces and their distribution 
To enable soils in free nature to create forces, corresponding free spaces are 
required. In order to make these spaces recognizable, a fixed value is necessary, 
which was found the volume of an 'earth block'. If one applies the inclination plane 
as an area diagonal of the earth block, height h and width b of the block can be 
calculated via inclination angle β, soil type, and calculation depth a = 1,00 m. The 
diagonal also divides block area A = b ∙ h into the upper active area Ao and the lower 
reactive area Au (see Fig. 7). 
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Fig. 8 shows the forces and their locations, as calculated according to the 'physical 
level'. If one compares the build-up of horizontal force Hf in the 'standing' earth 
wedge C-A-B, which is generated by the soil weight above the inclination plane, the 
horizontal force Lh in the 'lying' wedge C-B-D can only be generated under the same 
condition. Consequently, force H of the lying earth wedge is generated from the soil 
weight  resting on the inclination plane with angle β. 

 

         
Fig. 7 
                                        Fig. 8  

Fig. 7 shows wedge areas Ao and Au above and below the inclination plane. 
Fig. 8 shows the location of earth pressure force in the 'lying' and 'standing' earth wedges. 
 
For force determination, the new earth pressure teaching resorts to Monsieur de 
Coulomb's (1736 - 1806) "Classical earth pressure teachings", which he illustrates in 
his sketch sheet (see book, Section 2.2.). 

In his Fig. 7, Coulomb places the weight force of soil volume V = Ao ‧ a behind the 
supporting wall, and calculates the individual forces as follows: 
Weight force G = Ao ‧ a ‧ ptg ‧g      (in analogy: pig, png etc.) 
Normal force FN = Ge ‧ cos β 
Downhill force FH = Ge ‧ sin β 
Earth pressure force Fa = Hf = G ‧sin β ‧cos β . 

Thrust height hv of earth pressure force Hf against the wall is calculated as: 
Height hv = h ‧ sin² β 

Forces can be converted into force meters, and applied to scale. For this, the 'force 
index' gi (git, gin) is required as quotient. 

Force index gi = a ∙ b ∙ ptg ∙ g /2   in kN/m² (in 'standing' earth wedge) 
   Force meter h= G / gi   in meters 
   Force meter fn = FN / gi 
  Force meter fh = FH / gi 

Force meter nv = Nv / gi 
Force meter hv= Hv / gi 
Force meter hf = -hn = Hf / gi 

The following forces and force meters were calculated for a soil type with density 
ptg' = 1,764 t/m³ and angle ßt = 55,0°: 
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Fig. 9 shows lying earth wedge at left of axis A-B, and the standing earth wedge at right. 
Fig. 10 shows the force distribution in the earth wedges (angles α = 58° and β = 58°). 
 
From the figures above, it can be derived that every force in the wedge occupies a 
portion of wedge area Ao. Consequently, the force values of the 'lying' wedge C-B-D 
can be determined from area Au' = h ∙ bu / 4. The calculation method above the 
'physical plane' is applicable with all inclination angles βt = 0,6° up to 89,4°. Only the 
forces FN and FH change their positions in the earth wedge: 

   Angle β > 45°: Normal force FN is smaller than downhill force FH. 
 Angle β = 45°: Normal force FN and downhill force FH are equal. 
  Angle β < 45°: Normal force FN is larger than downhill force FH. 

 
 
2.5   Semicircle of soil types 
In the previous sections it was shown that the properties of soils and the earth forces 
are closely related. If one value changes, all the other values also change. This 
knowledge can be used for all soil types, regardless of whether they are in the dry, 
moist or wet state or are located under water. Consequently, it is possible to 
determine their earth pressure force and their thrust height via the 'semicircle of soil 
types'. 
 
For this, a coordinate system is used, whose ordinates correspond to a 10,0 m high 
wall, and the earth pressure force of the respective soil type can be determined on 
the abscissa. Radius r = 5,00 m is determined by the soil type with inclination plane 
β = 45°. By placing the inclined planes at the zero point, intersections with the semi-
circle are created, which ‒ referred to the respective soil type ‒ limit the lengths of 
the downhill planes. The horizontal line drawn from the intersection to the ordinate 
then corresponds to the force meter of the earth pressure force. Force Hf is 
calculated by force meter times force index gi. 
For soil types with angles β = 65° and 55°, Fig. 11 shows the force meters of earth 
pressures as well as their thrust heights against the wall. In the following, earth 
pressure force Hf and its thrust height hv against the wall will be calculated for a soil 
type with density ptg' =1,764 t/m³ and angle β = 55°. 
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Fig. 11 shows the dependencies of inclination angles and earth pressure forces, 
and their thrust heights against the wall in the 'semicircle of soil type'. 
 
Wedge width b = h / tan β = 10,0 / 1,428 = 7,00 m 
Force meter of earth pressure force hf = h ∙ sin β ∙ cos β = 10,0 ∙ 0,819 ∙ 0,574 = 4,70 m 
Thrust height of earth pressure force hv = h ∙ sin² β = 10,0 ∙ 0,671 = 6,71 m 
Force index gi = a ∙ b ∙ ptg ∙ g /2 = 1,0 ∙ 7,00 ∙ 1,764 ∙ 9,807 /2 = 121,1 kN/m² 
Earth pressure force Hf = hf ∙ gi = 4,70 ∙ 121,1 = 569,2 kN 
 
If several earth blocks of the same soil type are placed next to each other, their forces 
permit an equilibrium in the soil/mantle to be demonstrated. Only natural or artificial 
interventions into the force system can cause soils to move. 
 

 
Fig. 12 shows opposing earth wedges, whose forces maintain the mantle’s equilibrium. 
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2.6   Load bearing capacity of soils 
Determination of the load bearing capacity of soils is closely connected with the 
calculation of soil properties. Here, the knowledge of construction engineers is 
obeyed, that every type of rock is able to support a square column of the same type 
of rock with height h* = 100 m without impressions appearing in the rock. If this 
assumption is applied to granite, a granite massif must be able to support the weight 
force G = h ∙ Ad ∙ ptg90 ∙ g = 100 ‧ 1,0 ‧ 3,00 ‧ 9,708 = 2912,4 kN above its contact 
area Ad = b ∙ a = 1,00 m²: 

Hence: σD zul = G / Ad = 2912,4 / 1,00 = 2.912 kN/m² 

If the weight force G is applied to a 100 m high rock column, and a one-sided direction 
of force is permitted, the friction plane under the tangent tan βt = h*/ b = 100 / 1,0 = 
100 (friction coefficient μ = 100), and equal to inclination angle βt = 89,4°, will be 
developed. Conversely, height h and width b of area A = V / a = 100 m² can be 
calculated, if the inclination plane under its angle (here ßt = 55,0°) intersects area A 
as a diagonal (see Fig. 14). 

Height h = √ (A ∙ tan βt) = √ 100 ∙ tan 55° = 11,95 m 
Width b = √ (A / tan βt) = √ 100 / tan 55° = 8,37 m 

If a soil column with density ptg' = 1,764 t/m³ and height h = 11,95 m is placed on the 
contact area Ad = 1,00 m², the soil type's permissible load bearing capacity can be 
calculated from its weight force. 

Soil pressure σDzul 55 = Ad ‧ h ‧ ptg55‧ g = 1,00 ‧ 11,95 ‧ 1,764 ‧ 9,807 = 
Soil pressure σDzul 55 = 206,7 kN/m² 

          Fig. 13                                 Fig. 14                                         Fig. 15  
 
Fig. 13 shows the vertical section through the rock column with the inclination 
plane (green) and the active and reactive force areas Aa and Ar. 
Figs. 14 and 15 shows the transition from the rock column to the soil body under 
the inclination angle βt = 55,0° and the inclination plane (cyan). 
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This calculation method for load bearing capacity can be used for all soil types. 
Although the weight force increases for soils in the moist and wet state, only the load 
bearing capacity of a dry soil should also be applied here. The lower load bearing 
capacity is justified, because water under pressure will give way, and therefore 
cannot be used for force dispersal. The soil area in which force dispersal is carried 
out, can be determined via the inclination angle βi or βn. 
 
 
2.7   General notes on the dispersal of external forces in the soil 
The load bearing capacity of soils is oriented along the permissible soil pressure σDzul. 
and is influenced by the number of permitted force directions within the load-
dispersing soil. Per force direction, one earth block is availabe for force dispersal, i.e. 
strip foundations disperse the load via two earth blocks, and single foundations via 
four earth blocks. 
 

 
Fig. 16 

 
Fig. 17 

 
Fig. 18 

 
Fig. 16 shows the two-sided force dispersal in the soil under strip foundations 
Figs. 17 and 18 show multi-sided force dispersal in the soil under single foundations 
 
Fig. 19 is a photo from the Deutsche Forschungsgesellschaft für Bodenmechanik 
(Degebo), and shows the traces of four-sided force dispersal. This force dispersal was 
modified and included in Fig. 18. 

  Fig. 19 
 
The volume of the soil's own weight is formed below load area Ad. Its weight force 
must be added to the load as the soil's own weight, and therefore be dispersed into 
the soil as the total load via the four earth blocks. As shown in Figs. 20 and 21, the 
volume of the soil's own weight can adopt the shape of a circular cone or pyramid 
'standing on its point'. Height ho of the active soil body is calculated from the soil's 
inclination angle β. Within the four blocks, the volume of the soil's own weight 
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occupies one third of the total volume. On the surface, the areas Ak mark the 
extensions of the force dispersals. 
 

                                      
 
Fig. 20 shows a circular foundation with radial force dispersal over area Ak. 
Fig. 21 shows a single square foundation with four-sided force dispersal. 
 
Calculation examples of force dispersal under foundations are given in Sect. 3.1ff. 
 
 
2.8   Natural shear plane of soils 
In order to examine the shear plane positions of soils in lying earth wedges more 
closely, sand was loosely filled into the left-hand chamber of the glass container up 
to height h, and the sand surface smoothed. Following the abrupt removal of the 
separating glass pane, the sand slipped down into the right-hand chamber. Hereby, 
a natural shear plane was formed with angle s (s = new designation). The sand did 
not loosen during slipping, so that dispersed and filled quantities remained equal. 
The shear plane divided the filling height h into h/2, and thereby showed that the 
double tangent of the shear angle corresponds to the natural friction angle, 
consequently: tan s = tan β /2. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 22 shows the inclination plane (red) and the shear plane (green). 
 
Additional tests with soils in dry, moist, and wet states as well as soils under water 
confirm that the inclination angle stands in a direct relationship to soil density. This 
shows that soil angle and soil density can be calculated – if one value is changed, all 
the other values also change, which permits a new soil type to be created. 
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Consequently, the conviction grows that empiric soil characteristics can only lead to 
faulty calculation results. The following figures show the positions of natural inclined 
plane, shear plane, and earth pressure force according to 'inclined plane'. 
 

Fig. 23 

. 

Fig. 24 
 

Fig. 23 shows an earth wedge standing on its point with inclination angle β. 
Fig. 24 shows a lying earth wedge with natural shear plane and shear angle s. 
Fig. 25 shows the arrangement of the natural soil angles in an earth wedge. 
 
 
2.9   Horizontal forces in soils 
Current teachings support the doctrine that horizontal forces cannot build up in soils 
in a state of rest. As proof, soil behaviour is equated to that of spheres, stating that 
their weight force G can only be dispersed vertically into lower layers. 
 

 Pict. P02.20 shows that in a heap of spheres 
with horizontal support, force dispersal is only 
possible in the vertical direction. 
This thesis can be disproved by placing the 
spheres in a container, Fig. 26. 

        26 

 
If spheres are filled into a container, they are 
also in the state of rest, whereby   ̶  similar to 
soils  ̶  they create horizontal forces against the 
container walls. Therefore, movements of the 
supporting wall to mobilize horizontal soil 
stresses are superfluous. 
The real dispersal of forces from sphere to 
sphere is shown in detail, whereby diagonal, 
horizontal, and vertical force directions are 
shown (see Fig. 27). 
 
 

 
Because soils support themselves via the grain structure in the same way, the force 
paths shown for spheres can also be applied for soils. 
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Fig. 27 Load dispersal against a solid wall 

 
 
2.10   Test: Determining the height level of earth pressure force 
The current standards specify the same for all soil types: The greatest horizontal 
stress σxx lies in the basal plane of the earth wedge (Pict. P05.120). In Mohr's stress 
circle (Pict. I01.70), the horizontal stress is located in the plane (Pol–Z). For wall 
dimensioning, this is applied at height H/3. 

 
 
Pict. P05.120  

 

The following test setup was used to investigate the true soil behaviour after 
removing the lateral support. In particular, the aim was to determine at which height 
the greatest earth pressure force acts on the wall to be dimensioned. For the test, 
five layers of dry basalt grit were built up in the left chamber of a glass container, 
covered by a top layer of wet basalt grit. Paper strips were inserted between the 
layers for the purpose of visualizing the soil behaviour after removing the separating 
glass pane (see Fig. 28). 
 
After removal of the separating glass pane, a slightly concave shear plane was 
formed, which changed to a linear plane after removing the upper paper strip. Apart 
from that, the test showed that the basalt grit only moved above the natural inclined 
plane, i.e. in the area of the 'standing earth wedge'. No signs of movement were 
apparent below the inclination plane (red), which would permit conclusions to be 
drawn about earth forces or earth stresses σxx in the area of the basal plane 
(container floor). 
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Fig. 28 shows the basalt grit layers in the left chamber of the glass container. 
Fig. 29 shows the slipped basalt grit with formation of a slightly concave surface. 
 

 
 
 
 
 
Fig. 30 shows the newly formed linear shear 
plane of the grit after removal of the upper 
paper strip. 

 
The test shows that the earth pressure force (horizontal stress σxx) described in the 
standards does not occur in the basal plane/container floor. 
 
 
2.11   Wall friction forces and silo theory 
Current teachings see vertical frictional forces between the rear supporting wall 
surface and the soil behind the wall. Regarding wall friction, the teachings  cite the 
following in the document 'Earth pressure P', page 11: 
 

 

1.  On the rear side of a rough wall, thrust forces 
occur which can influence earth pressure incli-
nation angle δa and earth pressure force Ea. 
2.  With positive wall friction, a convex fracture 
plane is created – with negative wall friction, the 
curvature is concave (see Pict. P05.60 at left). 

To substantiate this assumption, current tea-
chings make use of the 'silo theory'. Here, fric-
tional forces occur on the silo walls when the 
filling material is discharged.  

No mention of the silo theory is found in the pertinent reference books on physics. 
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In his "Handbuch der Physik" (ISBN 3-446-21760-6), Horst Kuchling describes the 
frictional force FR  under 7.14 as follows: 
"Apart from the resistance of the surrounding medium, friction appears in case of 
movement as an energy-consuming resistance. It acts on the contact surfaces of two 
touching solid bodies and constrains the relative movement between the two bodies. 
Frictional force always acts parallel to the contact surface and in opposition to the 
movement and therefore also to the force causing the movement. Frictional force is 
less than the normal force or the vertical weight force. The frictional force 
corresponds to the downhill force". 
 
Consequently, frictional forces between wall and soil can only be generated, if wall 
or soil move vertically. From the static point of view, both possibilities are excluded. 
On the search for frictional forces, the filling of a silo with pellets and subsequent 
removal of the pellets was observed in several phases. 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 31 shows a silo after being filled with pellets. 
Fig. 32 shows the silo after partial removal of the pellets with an even top surface. 
Fig. 33 shows the formation of a hollow cone and thereby the pellets' drive towards the 
silo's center. 
 
Initially, the pellets form a heaped cone, whose surface line corresponds to the shear 
plane of the filling media (Fig. 31). After partial removal of the filling, a more or less 
horizontal surface develops, which gradually changes to a central, funnel-shaped 
depression (see Fig. 32). Through further removal of material, the depression 
changes to a hollow cone, whereby the pellets move from the silo wall towards the 
silo's center (see Fig. 33). As a result, there were insufficient pellets in contact with 
the silo wall to generate friction against the wall. Similar behaviour was observed 
with water and loose, dry sand, if these substances were filled into a funnel and were 
discharged via the funnel's lower opening. 
 
Based on these observations, forces must be excluded that could generate friction 
on the vertical silo wall by means of the filling media. 
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2.12   Tracing external forces (loads) in soils 
For the dispersal of force P in his Figure 7, Coulomb supplements the area of the soil's 
own weight C-a-B with the area (a-a'-B'-B). Hereby, Coulomb oversees that the 
dispersal of force P is carried out via active and reactive surface portions. 
Consequently, the force area (a‒a'‒B'‒B) must be divided diagonally, whereby a 
reduced wedge width b (C‒a) results for the same height h (C‒B'. 
 

 
 

Fig. 34, Coulomb's Figure 7 

The division of area (a-a'-B'-B) forms a steeper 
inclination angle βe and lengthens the fric-
tion/inclined plane. 
 
As shown Figure 7, force dispersal in the soil is 
usually vertical. If a barrier layer (rock or con-
crete) obstructs the vertical force dispersal, it 
continues in the horizontal direction. 
Tests conducted by Degebo with sand in a 
concrete basin exhibited a horizontal pressure 
generation in the sand (see Fig. 35).  

 

The visible traces in the sand show a 
dispersal of the pressure force in the 
horizontal direction, and the for-
mation of new friction planes under 
angle βe. 
Moreover, Fig. 35 shows that the 
forces can be calculated by means of 
the physical plane. 

 
When calculating the earth pressure of loads/external forces that are applied to soils, 
it must be examined in advance, in which direction force dispersal can take place in 
the soil. 

Fig. 36 shows the inclined planes without/with load and vertical force dispersal. 
Fig. 37 shows a more horizontal force dispersal due to a rock or concrete layer. 
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To calculate load dispersal, the load/force above height he must first be adapted to 
the properties of the in-situ soil. Height he is calculated by dividing force (kN) through 
soil density γ (kN/m³). If nothing else is specified, the load above the entire wedge 
width b must be applied. Also here, the calculation depth a = 100 m applies. 
 
 
2.13   Unequal vectorial soil stresses 
Different from Coulomb's 'Classical Earth Pressure Teachings', where the angles of 
the normal and downhill force planes are directly related, the current teachings see 
different stresses due to unequal angles ϑ1 and ϑ2. They assign the normal stress 
component σn and the stress component τn to the angles, and derive the stress 
difference from the efficiency factor of a Rankine steam engine. It is stated that 
particularly with solid bodies under pressure, different vectors are detectable, as 
shown below in Pict. I01.60 and Pict. P05.10. 
 

                                            Pict. I01.60  

 
 
 
 
 
 
 
 
 
 
 

                                            Pict. P05.10 
 
The formation of unequal vectors in a solid body was to be verified with a concrete 
test cube. After the application of pressure, only equally long, unidirectional, and 
mirror-image force paths could be found in the cube. 
 

Fig. 38 shows the 
fracture paths in the 
concrete test cube. 

 
Fig. 39 only shows symmetrical 
fracture and force paths in the 
cube. 

Fig. 40 shows the action 
and reaction areas in the 
cube. 

 
Furthermore, it was observed that dispersal of the pressure force runs vertically in 
the upper and lower areas of the cube, and any remaining force is dispersed hori-
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zontally only in the central area. These forces caused the concrete cube to burst, and 
formed the symmetrical fracture image in the cube. 
 
The following can be derived from the concrete cube under pressure: 

 Unequal vectors, as presented in Picts. I01.60 and P05.10 did nor occur in the 
concrete cube. 

 The pressure force that could not be dispersed via the concrete's frictional 
resistance was converted into horizontal forces. 

 The horizontal forces break up the concrete's structure, increase the pore 
formation in the concrete cube, and reduce its volume-related density. 

 
 
2.14   Earth blocks and their grouping 
When determining forces according to the new procedure, limits must be observed 
to exclude overloads in the soil. These are specified by the maximum volume of an 
earth block Vo = 100 m³, which is derived from the 100 m high rock column that was 
placed on contact area Ad = 1,00 m² to determine the soil properties. Earth blocks 
can be grouped to determine the earth forces for dispersing loads/external forces as 
well as the earth forces against structures. Hereby, the respective force build-up and 
dispersal is carried out via active and reactive force areas and/or volume, taking the 
real force directions into account. 
 

 
 

41 
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43 

Fig. 41 shows a group of four earth blocks for load dispersal under a single foundation. 
Fig. 42 shows eight earth blocks with vertical reference axis for force dispersal of pile loads. 
Fig. 43 shows four earth blocks with horizontal reference axis to determine forces in pipes. 
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3 Earth pressure – more detailed calculation examples 
 
3.1   Load bearing capacity of a rectangular foundation 
A rectangular foundation with load area Ad' = af ∙ bf = 1,50 ∙ 2,00 = 3,00 m² is specified. 
The adjacent soil must be in the moist state, consisting of dry density ptg = 1,800 t/m³ 
and 200 liters/m³ water. 
 

 
Fig. 44 

To be calculated are the foundation's load 
bearing capacity and the force dispersal in the 
soil of the same soil type: 
 

1.  in the dry state 
2.  in the moist state 

 
Due to force dispersal, the surface will exhibit 
more or less oval areas (Fig. 19). To simplify 
the calculation system, a force dispersal using 
areas 2(Ak1 + Ak3) plus 2(Ak2 + Ak4) is selec-
ted (see Fig. 44). 

 
Load bearing capacity of dry soil 
Assuming a dry density of ptg =1,800 t/m³, all other properties can be calculated: 

Solids volume Vft  = Vf90 ∙ ptg /ptg90 = 1,00 ∙ 1,800 /3,0 = 0,600 m³ 
Pore volume Vlt = Vp90 - Vft = 1,000 - 0,600 = 0,400 m³ 
Inclination angle βt → tan βt = Vft /Vlt = 0,600 /0,400 = 1,500  →  βt = 56,3° 
Weight force Gt determined via Ad' = 3,00 m² → followed by: 
Volume of soil column V* = Ad ∙ h = 100 m³ 
Height ht → above angle βt = 56,3° 
ht = √ (V* ∙ tan βt /a) = √ (100 ∙ 1,500 / 1,0) = 12,25 m 
Width bt = √ V* /(tan βt ∙ a) = √ 100 / (1,500 ∙ 1,0) = 8,16 m 
Gt = Vt’ ∙ ptg ∙ g = 12,24 ∙ 1,800 ∙ 9,807 = 216,1 kN 
Soil pressure σDzul = Gt / Ad = 293,7 /1,00 = 216,1 kN/m² 
Weight force Gt'  →  Ad' ∙ ht ∙ ptg ∙ g = 3,00 ∙ 12,25 ∙ 1,800 ∙ 9,807 = 648,7 kN 
 
For load dispersal in the soil, the total volume ∑Vt  must be determined from the load 
volume (3 ∙ Vt') and the volume of the soil's own weight Vgt. Volume Vgt of the soil's 
own weight corresponds to an inverted pyramid, whose height hot is calculated from 
half the width of load area Ad' = 3,00 m², and angle βt = 56,3° (tan βt = 1,500). 

Width ao = af /2 = 1,50 / 2 = 0,75 m 
Height hot = ao ∙ tan βt = 0,75 ∙ 1,500 = 1,13 m 
Volume Vgt = hot ∙ Ad’ / 3 = 1,13 ∙ 3,00 / 3 = 1,13 m³ 
 
 
Load dispersal in dry soil 
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Total volume ∑Vt = 3 Vi' + Vgt = 3 ∙ 12,24 + 1,13 = 37,85 m³ 

First, the area of the total volume with total height hlt = ht + hot = 12,24 + 1,13 = 12,37 
m is divided into the vertical soil columns 2 ∙ Ak1 and 2 ∙ Ak2. Subsequently, the load 
is dispersed via the width, i.e. via the areas 2 ∙ (Ak1 + Ak3) and 2 ∙ (Ak2 + Ak4). Widths 
bga and bgb must be calculated for the force dispersal via angle βt: 

Area Ak1 = af ∙ bo /2 = 1,50 ∙ 0,75 /2 = 0,563 m² 
Volume Vk1 = Ak1 ∙ hlt = 0,563 ∙ 12,37 = 6,96 m³ 
 
Referred to width af = 1,50 m: 
Height hga = √ (Vk1 ∙ tan βt /af) = √ (6,96 ∙ 1,500 / 1,5) = 2,64 m 
Width bga = √ Vk1 / (tan βt ∙ af) = √ 6,96 / (1,500 ∙ 1,5) = 1,86 m 
Width bx = bga - bo/ 3 = 1,86 - 0,75 /3 = 1,61 m 
Area Ak2 = ao ∙ (bf + bf - af) /2 = 0,75 ∙ (2,00 + 2,00 - 1,50) /2 = 0,937 m² 
Volume Vk2 = Ak2 ∙ hl = 0,937 ∙ 12,37 = 11,53 m³ 

Referred to width bf = 2,00 m: 
Height hgb = √ (Vk2 ∙ tan βt /bf) = √ (11,53 ∙ 1,500 /2,00) = 2,94 m 
Width bgb = √ Vk2 / (tan βt ∙ bf) = √ 11,53 / (1,500 ∙ 2,00) = 1,96 m 
Width ax = bgb - ao/ 3 = 1,96 - 0,75 /3 = 1,71 m 
 
Result for dry soil 
Via the foundation with area Ad' = 3,00 m², dry soil can support the weight force 
Gtezul. = 648,3 kN, whereby the foundation's own weight must be subtracted. With 
all-sided force dispersal, the following wedge-shaped force areas will be formed in 
the soil: 

Vk1 →  width af = 1,50 m, height hga = 2,64 m and depth (width) bx = 1,61 m. 
Vk2 →  width bf = 2,00 m, height hgb = 2,94 m and depth (width) ax = 1,71 m 
Soil subsidence due to the load must be prevented. 
 
Load bearing capacity of moist soil 
Volumes Vft = 0,600 m³ and Vlt = 0,400 m³ must be used. Taking the water into 
account, the other values are calculated as follows: 

Fictive water volume Vfn 
Vfn = Vli ∙ pwg /ptg90 = 0,200 ∙ 1,0 /3,0 = 0,067 m³ 
Inclination angle βi of moist soil 
tan βi = Vft /(Vlt + Vfn) = 0,600 /(0,400 + 0,067) = 1,285 → βi = 52,1° 
Moist density pig →  with Vf90  = 1,00 m³ 
pig = (Vft ∙ ptg90 + Vli ∙ pwg) / Vf90 

pig = (0,600 ∙ 3,00 + 0,200 ∙ 1,0) /1,0 = 2,00 t/m³ 
Weight force Gi:  → moist soil 
Volume of soil column V* = Ad ∙ h = 1,00 ∙ 100 = 100 m³ 
Height hi → via angle βi = 52,1°  
hi = √ (V* ∙ tan βt /a) = √ (100 ∙ 1,285 /1,0) = 11,34 m 
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Width bi = √ V* /(tan βt ∙ a) = √ 100 /(1,285 ∙ 1,0) = 8,82 m 
Volume Vi’  →  per force direcƟon and contact area Ad = 1,00 m² 
Soil column Vi’ = Ad ∙ hi = 1,00 ∙ 11,34 = 11,34 m³ 
Weight force Gi  →  per soil column, using dry density ptg = 1,800 t/m³ and 
g = 9,807m/s², therefore: 
Gi = Vi’ ∙ ptg ∙ g = 11,34 ∙ 1,800 ∙ 9,807 = 200,2 kN 
Soil pressure σDzul = Gi /Ad = 200,2 /1,00 = 200,1 kN/m² 
 
Result 
For moist soil, the permissible weight force Gie is calculated via the soil pressure σDzul  

= 200,1 kN/m² and the three specified soil columns of the foundations Ad = 1,00 m² 
→ Ad' = 3,00 m², therefore weight force Giezul. = σDzul ∙ 3 ∙ Ad  = 200,1 ∙ 3 ∙ 1,00 = 600,3 
kN 
 
Load dispersal in moist soil 
For load dispersal, the total volume ∑Vi must be determined. This consists of the 
volume of weight force Vi' and the volume of the soil's own weight Vgi', which is 
calculated using the shape of a pyramid. 

Width ao = af /2 = 1,50 / 2 = 0,75 m 
Height hoi  → angle βi = 52,1° with tan βi = 1,285 
hoi = ao ∙ tan βi = 0,75 ∙ 1,285 = 0,96 m 
Volume Vgi = hoi ∙ Ad’ = 0,96 ∙ 3,00 / 3 = 0,96 m³ 
Total volume ∑Vi = 3 Vi' + Vgi = 3 ∙ 11,34 + 0,96 = 34,98 m³ 
 
The total volume with total height hl = hi + hoi = 11,34 + 0,96 = 12,30 m must be 
divided into soil columns 2 ∙ Ak1 and 2 ∙ Ak2. Their depths bga and bgb are calculated 
via angle βi, so that load dispersal is divided into the areas 2 ∙ (Ak1 + Ak3) and 2 ∙ (Ak2 
+ Ak4): 

Area Ak1 = af ∙ bo /2 = 1,50 ∙ 0,75 /2 = 0,563 m² 
Volume Vk1 = Ak1 ∙ hl = 0,563 ∙ 12,30 = 6,92 m³ 
 
Referred to width af = 1,50 m: 
Height hga = √ (Vk1 ∙ tan βi / af) = √ (6,92 ∙ 1,285 / 1,5) = 2,43 m 
Depth bga = √ Vk1 / (tan βi ∙ af) = √ 6,92 / (1,285 ∙ 1,5) = 1,89 m 
Depth bx = bga – bo/ 3 = 1,89 – 0,75 / 3 = 1,64 m 
Area Ak2 = ao ∙ (bf + bf – af) /2 = 0,75 ∙ (2,00 + 2,00 – 1,50) / 2 = 0,937 m² 
Volume Vk2 = Ak2 ∙ hl = 0,937 ∙ 12,30 = 11,43 m³ 

Referred to width bf = 2,00 m: 
Height hgb = √ (Vk2 ∙ tan βi / bf) = √ (11,43 ∙ 1,285 /2,00) = 2,71 m 
Width bgb = √ Vk2 / (tan βi ∙ bf) = √ 11,43 / (1,285 ∙ 2,00) = 2,11 m 
Width ax = bgb - ao/3 = 2,11 - 0,75 / 3 = 1,86 m 
 
Result for moist soil 
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Via the foundation with area Ad' = 3,00 m², moist soil can support the weight force 
Giezul. = 600,3 kN, whereby the foundation's own weight must be subtracted. With 
all-sided force dispersal, the following wedge-shaped force areas will be formed in 
the soil: 

Vk1 →  width af = 1,50 m, height hga = 2,43 m, and depth (width) bx = 1,64 m. 
Vk2 →  width bf = 2,00 m, height hgb = 2,71 m, and depth (width) ax = 1,86 m 
With increasing water content, the load bearing capacity of the soil is reduced. 
 
Comparison of the results 
The calculations show that a soil's load bearing capacity is greatly influenced by its 
state: dry, moist or wet. In the dry state, the selected soil can disperse the external 
force Gtezul. = 648,3 kN, and force Giezul. = 600,3 kN in the moist state. This means a 
load bearing reduction of about 8 %. The foundation's own weight is not included in 
both forces. 
Considering that the soil is able to absorb twice the amount of water, a further 
reduction of load bearing capacity is possible. 
 
 
3.2   Load bearing capacity of soils with permissible subsidence 
Soil subsidence, regardless of whether under foundations or piles, represents exces-
sive ground loading. The higher force reduces the pore volume of the loaded soil, 
thereby changing its properties, such as inclination angle and density. This change of 
soil structure is not subject to any time limit, i.e. soil subsidence as well as its 
consequences can also occur many years later. 
 

 
Fig. 45 

In the following, a strip foundation with width 
bf = 1,00 m is assumed, which has subsided by 
height Δh = 0,08 m due to the permissible soil 
pressure being exceeded. Load dispersal is 
shown here one-sided, but acts inversely, i.e. 
two-sided (see Fig. 45). 
 
Under the foundation, a soil type with dry 
density ptg55 = 1,764 t/m³, inclination angle βt 
= 55,0° and calculated soil pressure σDzul 55 = 
206,7 kN/m² is selected. Already determined 
for one-sided force dispersal are height hg = 
11,95 m and width bg = 8,37 m of the load-
dispersing force field (see Fig. 14 in  Sect. 2.6.). 

To be determined is weight force Ge*, which has caused the foundation's subsidence 
as well as soil compaction.  
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Force dispersal without foundation subsidence 
The load required for a soil pressure of σDzul 55 = 206,7 kN/m² consists of a 11,95 m 
high soil column with base area Ad = 1,00 m² (h = 206,7 / ptg55 ‧ g = 11,95 m). For a 
strip foundation with bilateral force dispersal, width bg = 1,00 m and therefore also 
load volume V = 11,95 m³ must be halved. Calculated density ptg55 = 1,764 t/m³. 

First, volume Vo of the soil's own weight must be determined: 
Height of earth wedge ho = bg ‧ tan 55°/ 2 = 1,0 ‧ 1,428 / 2 = 0,71 m 
Volume Vo = ho ‧ a ‧ bg / 2 = 0,71 ‧ 1,0 ‧ 1,0 / 2 = 0,355 m³ 
Volume of load V' = V ‧ bg / 2 = 11,95 ‧ 1,00 / 2 = 5,98 m³ 
Total volume V* = Vo + V = 0,355 + 5,98 = 6,34 m³ →  Ae = V*/ a = 6,34 m² 
Height h = hg = √ (Ae ∙ tan βt) = √ 6,34 ∙ tan 55,0° = 3,00 m 
Width b = bg = √ (Ae / tan β) = √ 6,34 / tan 55,0° = 2,11 m 

Soil column with density ptg55 

Height h' = √ (Ae ∙ tan βt) = √ 5,98 ∙ tan 55,0° = 2,92 m 
Width b' = √ (Ae / tan β) = √ 5,98 / tan 55,0° = 2,05 m 
Load due to soil column on base area Ad = 1,00 m² 
Height of column  hg = 2 ‧ h' ‧ b' = 2 ‧ 2,92 ‧ 2,05 = 11,97 m 
Soil pressure σvorh = hg ‧ ptg55 ‧ g = 11,97 ‧ 1,764 ‧ 9,807 = 207,1 kN/m² 
 
Force dispersal with foundation subsidence by height Δh = 0,08 m 
The original height h = 11,95 m of the load-dispersing soil column is reduced by Δh = 
0,08 m, resulting in height h' = 11,95 - 0,08 = 11,87 m. In the same way, density ptg55 
= 1,764 t/m³ is increased, thereby changing to density ptg' = ptg55‧ h / h' = 
1,764 ‧ 11,95 / 11,87 = 1,776 t/m³ 

Angle βt' can be determined via the solid and pore portions Vf' and Vl': 
Vf' = Vp ‧ ptg’ / ptg90 = 1,0 ‧ 1,776 / 3,00 = 0,592 m³ 
Vl’ = Vp - Vf’ = 1,00 - 0,592 = 0,408 m³ 
Angle βt' = → tan βt' = Vf' / Vl' = 0,592 / 0,408 = 1,451  →  βt' = 55,4° 
Height of earth wedge ho = bg ‧ tan 55,4°/ 2 = 1,0 ‧ 1,451 / 2 = 0,73 m 
Volume Vo = ho ‧ a ‧ bg / 2 = 0,73 ‧ 1,0 ‧ 1,0 / 2 = 0,36 m³ 
Volume of load V' = (h' + Δh) ‧ bg / 2 = 12,03 ‧ 1,00 / 2 = 6,01 m³ 
Total volume V* = Vo + V' = 0,36 + 6,01 = 6,37 m³ →  Ae = V*/ a = 6,37 m² 
Height h = hg = √ (Ae ∙ tan βt) = √ 6,37 ∙ tan 55,4° = 3,04 m 
Width b = bg = √ (Ae / tan β) = √ 6,37 / tan 55,4° = 2,10 m 

Soil column with density ptg' = 1,776 t/m³ 
Height h' = √ (Ae' ∙ tan βt) = √ 6,01 ∙ tan 55,4° = 2,98 m 
Width b' = √ (Ae' / tan β) = √ 6,01 / tan 55,4° = 2,04 m 
Load on base area Ad = 1,00 m² due to soil column with height hg* 
Height hg* = 2 ‧ h' ‧ b' = 2 ‧ 2,98 ‧ 2,04 = 12,16 m 
Soil pressure σvorh = hg' ‧ ptg55,4 ‧ g = 12,16 ‧ 1,776 ‧ 9,807 = 210,1 kN/m² 
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Result 
The calculations prove that even a slight exceedance of the permissible soil pressure 
from σDzul 55 = 206,7 kN/m² to σDzul 55,4 = 210,1 kN/m² can result in a significant soil 
subsidence of Δh = 0,08 m. With the same soil type in the moist or wet state, subsi-
dence would be increased. 

 
Fig. 46 

In a similar manner as above, the load on 
a foundation could be increased mathe-
matically, if the load calculation takes an 
existing anchoring depth (DIN 1054) into 
account, as shown in Fig. 46. 
 

Using the anchoring depth to increase the 
load is not advisable, because excavations 
around the foundation at a later time are 
often unavoidable. In these cases, the 
force reserves are missing, which can 
easily lead to serious foundation 
subsidences. As shown, only a slight load 
increase results in a subsidence of 8 cm. 

 
 
3.3   General notes on load dispersal via piles in soils 
Piles disperse their load via the pressure against the pile skin in the adjacent soil. 
Therefore, the size of the load depends on the horizontal earth pressure force acting 
on the pile. In a similar manner as for a single foundation, piles that are too closely 
arranged will disturb force dispersal, resulting in a reduction of pressure against the 
pile skin and thereby also to a limitation of the load (sagging of the pile). The force 
of the pile load is dispersed into the adjacent soil via eight earth blocks, arranged in 
two levels (see Fig. 42). 

 

 
Fig. 47 

Because the load is transferred into the 
adjacent soil via a polydirectional force 
(earth pressure) against the pile skin, 
the surface texture/roughness of the 
pile skin is insignificant. 
The forces in the upper level are cal-
culated via block height ho, whereby a 
cone-shaped force distribution into the 
soil is assumed. Soil density and the 
inclination/friction angle β are deter-
mined by the adjacent soil type (see 
Sect. 2.6.). 
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Fig. 48 

For force determination, the system of 
'lying earth wedges' must be applied. As 
shown in Fig. 47, forces Lh and Ln  form 
a dual cone with height ho and radius re. 
Hereby, the earth pressure forces act 
against the vertical pile axis. If the acting 
force is shifted from the reference axis 
to the pile skin, height hl and radius ree 
= r + re form a section plane on the axis. 

 

 
 

Fig. 49 shows force dispersal of the load 
and of the soil's own weight. 

The earth pressure forces on both sides 
of the axis must be determined. These 
forces must be reduced by the force 
amounts acting on the pile radius. 
Consequently, only the earth pressure 
forces remain, which can be used to 
disperse the pile load into the adjacent 
soil. Force Gf at the level below the pile 
foot can be determined via soil pressure 
σDzul and the load area of the foot. The 
force is dispersed via the cone volume 
Vae, which includes the volume Vo of 
the soil's own weight (see Fig. 49). 

The force dispersal corresponds to that 
of a circular foundation (see book, page 
169, Sect. 4.3.5.). Examples will follow. 

 
3.4   Single pile, integrated in the upper force level 
Specified is an in-situ concrete pile with diameter d = 0,60 m (without widened foot) 
and density ppf = 2,40 t/m³, which is to be set in a moist soil. In the dry state, the soil 
has the density ptg = 1,764 t/m³ and inclination angle βt = 55°. The water absorbed 
by the soil’s pore structure is specified at 180 liters per 1,0 m³. 
To be calculated are pile height hp and payload GG*, which can be applied to the pile 
without overloading the soil. 
 
Properties of moist soil 
First, solids volume Vf and pore volume Vl must be determined: 
Solids volume Vf = Vp90 ‧ ptg / ptg90 = 1,00 ‧ 1,764 / 3,00 = 0,588 m³ 
Pore volume Vl = Vp90 - Vf = 1,000 - 0,412 m³ 
Moist density pig = (0,588 ∙ 3,0 + 0,180 ∙ 1,0) /1,0 = 1,944 t/m³ 
Pore volume → occupied by water: Vln = 0,180 m³ 
Pore volume → not occupied by water: Vlt = Vl55 ‒ Vln = 0,412 ‒ 0,180 = 0,232 m³ 
Fictive solids volume Vfn 
Vfn = Vln ∙ pwg / ptg90 = 0,180 ∙ 1,0 / 3,0 = 0,060 
Inclination angle βi 
tan βi = Vf / (Vl + Vfn) = 0,588 / (0,412 + 0,060) = 1,246  → βi = 51,2° 
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Permissible soil pressure σDzul and force dispersal 
Soil pressure is determined via force area A = V* / a = 100 m² and inclination angle βi 
= 51,2°, tan βi = 1,246 with one-sided force dispersal: 

Force area: height h51 = 
h51 = √ V* ∙ tan βi / a = √ 100 ∙ 1,246 / 1,0 = 11,16 m 
Force area: width b51 = 
b51 = √ V* /tan βi /a = √ 100 ∙ 1,0 /1,246 = 8,96 m 
Weight force Gt  → with g = 9,807m/s² 
Gt = Vi ∙ ptg55 ∙ g = 11,16 ∙ 1,764 ∙ 9,807 = 193,1 kN 
Soil pressure σDzul = Gt /Ad = 193,1 /1,00 = 193,1 kN/m² 
 
With polydirectional force dispersal, the one-sided force dispersal with height ho and 
width b determined previously via depth a = 1,00 m is reduced, as is the case for a 
single pile. The inclination angle of the adjacent soil remains unchanged. To 
determine the new height h' and width b', a 100 m high soil column with volume V* 
= 100 m³ of the same soil is again placed on the square load area Ad = 1,00 m², and 
polydirectional force dispersal is permitted: 

Height ho = hp = 3√ V* ∙ tan βi² = 3√ 100 ∙ 1,246² = 5,37 m 
Width b' = re = √ V* / ho = √ 100 / 5,37 = 4,31 m 
Base area Ak = b'² = 4,31² = 18,6 m² 
 
Force acting against the pile axis with height hl 
As stated, four earth blocks are bundled to determine the earth pressure force 
against the pile skin. As a result, the square base area ΣAk = 4 ∙ Ak = 4 ∙ 18,6 = 74,3 m² 
is available, into which a cone with radius re = 4,31 m and height ho = 5,37 m is placed. 
The earth pressure force to be determined for both sides of the vertical cone axis via 
the volume of force Lh, would be aligned along the axis. If one wants to deviate from 
this normal case, and allow the full earth pressure from area Ar = ho ∙ re /2 to act 
against the skin, the cone with radius ree = re + r = 4,31 + 0,30 = 4,61 m must be 
placed at height hl: 

hl = ree ∙ tan βi = 4,61 ∙ 1,246 = 5,74 m. 
Base area of the cone Akr = π ∙ ree² = π ∙ 4,61² = 66,8 m² 
Cone volume Vkr = Akr ∙ ho / 3 = 66,8 ∙ 5,74 / 3 = 127,8 m³ 
 
A double cone with height hl = 5,74 m and diameter dk = 4,61 m must be inserted 
into the cone. Its volume Vka is calculated from: 
Circular cone Vka = π ∙ dk ²∙ hl / 3 = π ∙ 4,61² ∙ 5,74 / 12 = 31,9 m³ 
 
Determination of earth pressure against the pile axis 
Weight force Gpf   can be determined via volume Vka = 31,9 m³ of the double cone 
with density pig = 1,764 t/m³, and then divided by the two wedge sides: 

Weight force Gpf = Vka ∙ pig ∙ g = 31,9 ∙1,764 ∙ 9,807 = 551,8 kN 
Per pile side Gpf' = Gpf / 2 = 551,8 / 2 = 275,9 kN 
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Earth pressure Lh' = Gpf' / tan βi = 275,9 / 1,246 = 221,4 kN acting against the pile axis 
on each side. The earth pressure Lh, which acts against the pile skin on both sides, is 
calculated by means of Lh = Lh' ∙ re / ree = 221,4 ∙ 4,31 / 4,61 = 207,0 kN.  In this way, 
the pile is able to disperse the force/load GG via the two-sided application of earth 
pressure force Lh: 
Dispersal via the pile skin GG = 2 ∙ Ln = 2 ∙ Lh ∙ tan βi = 2 ∙ 207,0 ∙1,246 = 515,8 kN. 
 
Load dispersal via the pile foot 
Force Gf = σDzul ∙ (π ∙ r²) = 193,1 ∙ π ∙ 0,30² = 54,6 kN can be absorbed via the pile foot 
d = 0,60 m and soil pressure σDzul = 193,1 kN/m. For load dispersal in the soil, the cone 
of the soil's own weight must be determined first, and its volume Vf is then added to 
volume VGf  of force Gf: 

Volume Vf = (π ∙ 0,30²) ∙ r ∙ tan βi / 3 = 0,28 ∙ 0,3 ∙ 1,246 / 3 = 0,035 m³ 
Volume VGf  = Gf / (pig ∙ g) = 54,6 / (1,764 ∙ 9,807) = 31,56 m³ 
Volume ΣVf = Vf + VGf  = 0,035 + 31,56 = 31,6 m³ 

An earth cone must be formed from volume ΣVf, which disperses the force Gf: 

ΣVf = π ∙ h ∙ (h/ tan βi)² / 3 = π ∙ h³ / 1,246² ∙ 3 = 
h = 3√ ΣVf ∙ 1,246² ∙ 3 / π = 3√ 31,6 ∙ 1,483 = 3,60 m 
rg = h / tan βi = 3,60 / 1,246 = 2,89 m 
 
Own weight of the pile 
Volume Vhp = π ∙ r² ∙ hp / 3 = π ∙ 0,30² ∙ 5,37 / 3 = 0,51 m³ 
Pile's own weight GGf  = Vhp ∙ ppf ∙ g = 0,51 ∙ 2,40 ∙ 9,807 = 12,0 kN 
 
Payload GG*, which can be supported by the pile, consists of: 

Force dispersal via the pile skin GG = 515,8 kN 
Force dispersal via the pile foot Gf  = 54,6 kN 
Minus the pile's own weight GGf  = 12,0 kN 
Payload GG* = 515,8 + 54,6 - 12,0 = 558,4 kN 
 
Result 
In moist soil with density pig = 1,944 t/m³ and soil angle βi = 51,2°, the pile with ф 
0,60 m and height h = 5,37 m can support the payload GG* = 558,4 kN. With this 
payload, the pile will not subside. 
 
Not taken into account in this force determination are eccentric and dynamic pile 
loads as well as safety-relevant factors that could influence pile dimensioning. 
 
3.5   Single pile, integrated in both force levels 
For this example, the data and partial results of Sect. 3.4 are taken over. Also to be 
determined is the force that can be transferred into the adjacent soil via the pile skin 
of the lower level (see Fig. 50). 
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Fig. 50 

Adapted to the block heights ho = hu = 
5,37 m, the pile height can be increased 
to hp = 10,74 m. Already determined is 
force GG = 515,8 kN that can be dis-
persed into the soil of the upper level via 
the pile skin. Still to be calculated is force 
GG' = 2 Hv of the lower level, whereby 
the force system of a 'standing earth 
wedge' must be applied. The calculation 
is started via height hl = 5,74 m, radius 
ree = 4,61 m, and inclination angle βi = 
51,2°, tan βi = 1,246. 

 
To be calculated are the earth pressure forces Hf by means of the active soil’s 
circular cone 

Angle = βi = 51,2°, tan βi = 1,246 
Height nv = hl ∙ cos βi² = 5,74 ∙ 0,393 = 2,25 m 
Height hv = hl ∙ sin βi² = 5,74 ∙ 0,607 = 3,49 m 
Radius ree' at height hv 
ree' = hl ∙ cos βi ∙ sin βi = 5,74 ∙ 0,627 ∙ 0,780 = 2,81 m 
dk' = 2 ree' = 2 ∙ 2,81 = 5,62 m 
Volume Vka' = π ∙ dk' ²∙ hl / 3 = π ∙ 5,62² ∙ 5,74 / 12 = 47,46 m³  
Weight force Gpf ' = Vka' ∙ pig ∙ g = 47,46 ∙1,764 ∙ 9,807 = 821,0 kN 
On each pile side Gpf' = Gpf ' / 2 = 821,0 / 2 = 410,5 kN, 
whereby the earth pressure force acts against the pile axis from two sides. 
Lh' = Gpf' / tan βi = 410,5 / 1,246 = 339,5 kN 
Due to the shift from the pile axis to the pile skin, force Lh' is reduced, so that 
Lh = Lh' ∙ re / ree = 339,5 ∙ 4,31 / 4,61 = 317,4 kN. 

In this way, via the earth pressure on the skin, the pile can disperse the following 
force/load GG' by means of two-sided application of the earth pressure force Lh: 

GG' = 2 ∙ Ln = 2 ∙ Lh ∙ tan βi = 2 ∙ 317,4 ∙ 1,246 = 791,0 kN 
plus force GG = 515,8 kN from the upper level, 
minus the pile's own weight from height hp' = 10,74 m, 
therefore, 2 ∙ GGf   = 2 ∙ 12,0 = 24 kN. 
 
Result 
In moist soil with density pig = 1,944 t/m³ and soil angle βi = 51,2°, the single pile with 
ф 0,60 m and  height hp = 10,74 m can disperse the payload GG* = 515,8 + 791,0 - 
24,0 = 1.283 kN. 
With this payload, the pile will not subside. 
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3.6   Single pile, integrated in the extended upper force level 
The extension results from the application of the adjacent soil’s load area directly 
against the pile skin. Hereby, radius re is expanded to radius ree = re + r = 6,85 + 
0,30 = 7,15 m 
With one-sided force dispersal for the selected soil type with inclination angle βi = 
51,2°, a force area with height h51 =11,16 m and width b51 = 8,96 m was calculated 
(Sect. 2.6). Based on the load distribution in single foundations, a polydirectional 
force dispersal in the soil was assumed, which changes height h51 to height ho = 5,37 
m. For foundations that require load application to the adjacent soil via a flat surface, 
this load distribution should be correct 

The square column adopts height ho and width b': 
Height ho = hp = 3√ ΣV* ∙ tan βi² = 3√ 400 ∙ 1,246² = 8,53 m 
Width b' = re = √ ΣV* / ho = √ 400 / 8,53 = 6,85 m 
Base area Ak = b'² = 6,85² = 46,92 m² 

 

 

 
 

Fig. 51 

The earth cone with radius re = 6,85 m 
and height hp = 8,53 m must be placed 
in this square column. Height hl = ree ∙ 
tan βi = 7,15 ∙ 1,246 = 8,90 m can then 
be determined via radius ree = re + r = 
6,85 + 0,30 = 7,15 m. Volume Vkr of the 
active double cone can be determined 
via height hl and radius ree/2 or dk = ree. 
As a result, circular cone Vka = π ∙ dk²∙ hl 
/ 3 = π ∙ 7,15² ∙ 8,90 / 12 = 119,1 m³ is 
formed (see Fig. 51). 

 
 
Determination of earth pressure against the pile axis 
The earth pressure force Lh, which acts on both sides of the pile axis, can be 
determined via weight force Gpf of the double cone. For this, volume Vka = 119,1 m³ 
and soil density pig = 1,764 t/m³ must be used. 

Calculation: 
Weight force Gpf = Vka ∙ pig ∙ g = 119,1 ∙ 1,764 ∙ 9,807 = 2060,0 kN, 
per pile side Gpf' = Gpf / 2 = 2060 / 2 = 1030,0 kN. 
Earth pressure force against pile axis: Lh' = Gpf' / tan βi = 1030,0 / 1,246 = 826,8 kN 
 
For the application of earth pressure force against the pile skin, earth pressure force 
Lh' must be reduced to force Lh: 
Earth pressure force Lh = Lh' ∙ re / ree = 826,8 ∙ 6,85 / 7,15 = 792,1 kN. 
Via the two-sided earth pressure force Lh =792,1 kN, the pile is able to disperse the 
load GG = 2 ∙ Ln = 2 ∙ Lh ∙ tan βi = 2 ∙ 792,1 ∙1,246 = 1.973,9 kN. 
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Own weight of the pile 
Volume Vhp = π ∙ r² ∙ hp / 3 = π ∙ 0,30² ∙ 8,53 / 3 = 0,80 m³ 
Pile's own weight GGf  = Vhp ∙ ppf ∙ g = 0,80 ∙ 2,40 ∙ 9,807 = 18,9 kN 
 
Payload GG*, which can be supported by the pile, consists of: 
Force dispersal via the pile skin GG = 1.973,9 kN 
Force dispersal via the pile foot Gf = 54,6 kN, as previously determined, 
minus the pile’s own weight GGf   = 18,9 kN 
Payload GG* = 1.973,9 + 54,6 - 18,9 = 2.009,6 kN 
 
Result 
As stated above, it should be checked whether the calculation using the four square 
earth blocks with volume ΣV*= 400 m³ and one-sided force dispersal is suitable for 
the pile. In this case, a pile with ф 0,60 m and height h = 8,53 m in moist soil with 
density pig = 1,944 t/m³ and soil angle βi = 51,2° can disperse the payload GG* = 
2009,6 kN. 
Not taken into account in this force determination are eccentric and dynamic pile 
loads as well as safety-relevant factors that could influence pile dimensioning. 
 
 
3.7   General notes on underground pipes 
In the relevant specialist literature, hardly any other subject is covered as diffe-
rentiatedly as the "Vertical loads on underground drain pipes". In order to provide 
clarification, the IKT Institute for Underground Infrastructure in Gelsenkirchen 
(www.ikt.de) carried out test setups in 2003 and published them in the document 
"Erneuerung mit Berstverfahren – Bemessung, Prüfung und Qualitätssicherung von 
Abwasserrohren" (Renewal with pipe bursting – Dimensioning, testing, and quality 
assurance for drain pipes) see Figs. 20 to 27, pages 29ff. 
 
Adapted to the laboratory equipment, the IKT selected a pipe covering using a 
somewhat sandy soil with a height of 0,70 m. Above the pipe, the "missing" soil 
volumes between 2,00 m and 8,00 m were compensated by means of varying 
mechanical pressures. To simulate live loads, the pressure on the soil of the pipe 
covering was increased. With reference to the frictional forces according to the silo 
theory, the laboratory test results currently represent the default calculation used in 
ATV-DVWK A 161. The IKT Institute‘s conclusions must be countered with the fact 
that varying pressures on a pipe cannot correspond to the real earth forces that are 
formed in the trench backfilling under free force development. Moreover, the IKT and 
ATV use the silo theory to substantiate a wall friction that does not exist in this form 
(see Sect. 2.11). 
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Fig. 52 shows the force areas at left 
without live load, and at right with live 
or static load. 

Fig. 43 in Sect. 2.14 shows that the new 
earth pressure teachings draw a vertical 
and a horizontal axis through the pipe’s 
centerline, and places an earth block in 
every quadrant. This force system can be 
applied with trenchless pipe laying or 
mined tunnels. For pipe laying in open 
trenches, the earth forces of the adjacent 
soil are aligned with the trench wall. This 
causes the horizontal system axis to shift 
from the pipe center to the trench floor. 
Inclination angle β, height h = ho = hu, and 
width b = bo = bu of the force areas can 
be determined via soil density, volume V* 
= 100 m³, and depth a = 1,00 m of the 
earth block. 

 
Figs. 53 and 54 below show that the force areas of the two force levels are initially 
aligned along the perpendicular axis A-B. This determines the height and width of the 
force areas via inclination angle β. The maximum influence of the force on the pipe is 
limited, if the force area along the axis A-B reaches height h = hg = √ (Ae ∙ tan βt), see 
Figs. 14 and 15 in Sect. 2.6. 
Accordingly, the force areas Ar and Aa must be taken up to the perpendicular axis G-
G' (see Fig. 53, right side). Fig. 54 shows the procedure, if a live load with substitute 
load height he is to be included in force determination. Due to the external load, the 
inclination angle β changes to angle βe. 
In the upper quadrants, the polar earth pressure forces against plane G-G' are 
calculated via the 'lying' wedge areas, and in the lower quadrants via the 'standing' 
wedge shapes. Calculation examples will follow. 
 
The test series 6 was carried out to clarify the most frequent damage events in sewer 
construction, such as axis shifts and sags in the pipe, pipe cracks, pipe breaks, and 
severed connections to the buildings. It was intended to simulate the effects if an 
open sewer trench is filled with a material whose density far exceeds that of the 
adjacent soil. For the test, dry basalt grit with density ptg = 1,850 t/m³ was used as 
backfilling material, and industrial cotton wool for the adjacent soil with less load-
bearing capacity. The test setup is described in the book. 
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Fig. 53 

 
Fig. 54 

 
Fig. 55 shows that the type of trench backfilling can cause the pipe to shift from its 
original position, causing its connections to the buildings to tear off. 

 

 
Fig. 55 shows the displacement of the lighter soil by 
the heavier trench backfilling. 

 
 
3.8   Calculation example ‒ Pipe DN 500 Sb without live load 
A drain pipe DN 500 Sb is to be laid in the soil of an open shored trench with depth 
hs = 5,00 m. The pipe has a with wall thickness s = 80 mm, and is to be laid on a 
bedding with height hb = 0,10 m. Panels  of vd = 0,12 m are used to shore the trench. 
Working space width bg is determined in accordance with the regulations. The trench 
soil has a moist density pig = 1,845 t/m³ and a water volume Vw = 0,102 t/m³. 
'Granular soil' is to be used for trench backfilling. In the compacted state, and with a 
water content Vw = 0,060 m³, the soil’s moist density pig = 2,120 t/m³. Live loads are 
not taken into account. 
 
To be determined are the dimensions of the sewer trench and the forces acting on 
the installed pipe. 
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Fig. 56 shows the earth wedges of the trench backfilling at center, and those of the adjacent 
soil at left. 
 
To be calculated are: 
1. Trench cross-section 
Trench depth hg = hs + s + hb = 5,00 + 0,08 + 0,10 = 5,18 m 
Trench width bg = di + 2 (s + ar + vd) = 0,50 + 2 (0,08 + 0,50 + 0,12) = 1,90 m 
Height of pipe covering hd = hs - di - s = 5,00 - 0,50 - 0,08 = 4,42 m 
Outer pipe radius ra = (ri + s) = 0,25 + 0,08 = 0,33 m 
Calculation height for the adjacent soil h = hg = 5,18 m 
 
2.  Adjacent soil: determination of the soil angles 
Dry density ptg = pig - w = 1,845 - 0,102 = 1,743 t/m³ 
Solids volume Vf = ptg / ptg90 = 1,743 / 3,00 = 0,581 t/m³ 
Pore volume Vl = Vp - Vf = 1,0 - 0,581 = 0,419 t/m³ 
Angle tan βt = Vf / Vl = 0,581 / 0,419 = 1,387 → βt = 54,2° 
Angle tan βi = Vf / (Vl + Vw) = 0,581 / (0,419 + 0,102 /3) = 1,282 → βi = 52,0° 
 
3.  Determination of force areas and forces of the adjacent soil  
via height hg = 5,18 m and angle βi = 52,0°: 
Width bo = hg / tan βi = 5,18 / 1,280 = 4,05 m 
Force area Au (A'-C’-M) = hg ∙ bo / 2 = 5,18 ∙ 4,05 / 2 = 10,49 m² 
Weight force Gu = Au ∙ a ∙ pig ∙ g = 10,49 ∙ 1,00 ∙ 1,845 ∙ 9,807 = 189,8 kN 
Force index git = Gu / hg = 189,8 / 5,18 = 36,64 kN/m² 
Force Lv = git ∙ hg ∙ a / 2 = 36,64 ∙ 5,18 ∙ 1,00 / 2 = 94,9 kN 
or Lv = hg ∙ bo ∙ a ∙ pig ∙ g / 4 = 5,18 ∙ 4,05 ∙ 1,00 ∙ 1,845 ∙ g / 4 = 94,9 kN 
Earth pressure force Lh = git ∙ bo ∙ a / 2 = 36,64 ∙ 4,05 ∙ 1,00 / 2 = 74,2 kN 
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Force Lh = 74,2 kN acts against the shoring panels at height hg / 2. When the trench 
has been filled, two earth pressure forces act from the backfilling against the trench 
wall above and below the horizontal plane C ̶ D' on both sides (see Fig. 56). 
 
Initially, determination of the pipe load must be set back, because the specifications 
require that the trench is backfilled with 'granular soil'. Therefore, the material’s den-
sity and the soil angle must be calculated first. As shown in Fig. 56, a 'lying' earth 
wedge with vertical force path is built up on the trench floor. On both sides of its 
inclined planes, force areas arise above and below the horizontal plane C  ̶D'. Due to 
the overlap of the force areas, polar acting earth pressures develop within them, so 
that initially only vertical forces act on the pipe. Below the terrain surface, two 'stan-
ding' earth wedges with height hoo are formed, whose vertical forces 2 Hv must be 
added to the initial pipe load. As shown in Fig. 57, the vertical load on the pipe is 
generated by the soil volume with depth a = 1,00 m, width da = 0,66 m, and height 
hs' = hd + fs + hv  ̶  hoo or hs' = hd + fs   ̶  nv. 
 
4.   Backfilling material: determination of the soil angles 
Dry density ptg = pig - w = 2,120 - 0,060 = 2,060 t/m³ 
Solids volume Vf = ptg / ptg90 = 2,060 / 3,00 = 0,687 t/m³ 
Pore volume Vl = Vp - Vf = 1,0 - 0,687 = 0,313 t/m³ 
Angle tan βt = Vf / Vl = 0,687 / 0,313 = 2,195 → βt = 65,5° 
Angle tan βi = Vf / (Vl + Vw) = 0,687 / (0,313 + 0,060 / 3) = 2,063 → βi = 64,1° 
 
5.   Determination of soil volume and force loading the pipe: 
Taken over are width bg = 1,90 m, width da = 0,66 m, and height hd = 4,42 m. 
Height hoo = 0,5 ∙ bg ∙ tan βi = 0,5 ∙ 1,90 ∙ 2,063 = 1,96 m 
Height nv = hoo ∙ cos² βi = 1,96 ∙ 0,191 = 0,37 m 
Height hy = hoo ∙ sin² βi = 1,96 ∙ 0,809 = 1,59 m 
Height rs = ra ∙ sin βi = 0,33 ∙ 0,900 = 0,30 m 
Height fs = ra - rs = 0,33 - 0,30 = 0,03 m 
Width fr = ra ∙ cos βi = 0,33 ∙ 0,437 = 0,14 m 
Height hs' = hd + fs - nv = 4,42 + 0,03 - 0,37 = 4,08 m 
 
Volume of pipe load 
V1 = a ∙ da ∙ hs’ = 1,0 ∙ 0,66 ∙ 4,08 = 2,693 m³ 
Pipe load due to distributed load qlv 
qlv = V1 ∙ pig ∙ g / da = 2,693 ∙ 2,120 ∙ 9,807 / 0,66 = 84,8 kN/m² 
Acting on the pipe haunches are the forces Lv 
Lv' = V1 ∙ pig ∙ g / 2 = 2,693 ∙ 2,120 ∙ 9,807 / 2 = 28,0 kN 
 
Force FV must be applied for pipe dimensioning. 
It is calculated via vertical force Lv' and angle βi = 64,1°, therefore 
Force FV = Lv' / sin βi = 28,0 / 0,90 = 31,2 kN 
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Fig. 57 shows the force distribution 

on the drain pipe. 

Result 
For the DN 500 Sb pipe to be laid at a depth 
of hs = 5,00 m, a shored trench with height 
hg = 5,18 m and width bg = 1,90 m is re-
quired. The distributed load qlv = 84,8 kN/m² 
was calculated as pipe load by means of the 
soil column of the filling material with height 
hs' = 4,08 m, width da = 0,66 m, and depth a 
= 1,00 m. Therefore, force FV = 31,2 kN is 
available for pipe dimensioning, which must 
be applied on both sides below the 
inclination angle βi = 64,1° and against the 
pipe. The pipe bedding angle is 2 a = 51,8°.  

 
Overloading of the soil does not occur in the bedding area, as the pipe's own weight 
including the complete filling is less than the soil's density. Earth pressure force Lh = 
74,2 kN from the adjacent soil acts against the shoring panels on both sides. 
 
 
3.9   Calculation example ‒ Pipe DN 1800 Sb without live load 
The following is specified for installing a drain in an open trench: 
Trench depth hs = 5,00 m, pipe wall thickness s = 0,18 m, and thickness of the shoring 
panel vd = 0,12 m. 'Granular soil' is to be used for trench backfilling and pipe bedding 
height hb = 0,25 m. Already calculated are its moist density pig = 2,120 t/m³ and 
inclination angle βi = 64,1°. 
The adjacent substratum soil has a water content of w = 0,180 t/m³ and a moist 
density of pig = 1,820 t/m³. Live loads are not taken into account. 

To be determined are the dimensions of the sewer trench and the forces acting on 
the installed pipe. 
 
To be calculated are: 
The descriptions and arrangement of the force areas can be taken from Fig. 58. 
 
1. Trench cross-section 
Trench depth hg = hs + s + hb = 5,00 + 0,18 + 0,25 = 5,43 m 
Trench width bg = di + 2 (s + ar + vd) = 1,80 + 2 (0,18 + 0,50 + 0,12) = 3,40 m 
Height of pipe covering hd = hs - di - s = 5,00 - 1,80 - 0,18 = 3,02 m 
Outer pipe radius ra = (ri + s) = 0,90 + 0,18 = 1,08 m   →  da = 2,16 m 
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Fig. 58 shows the pipe, embedded in the force areas of the rhombus acc. to Figs. 53 and 54. 
 
2.  Adjacent soil: Determining the soil angles 
Dry density ptg = pig - w = 1,820 - 0,180 = 1,640 t/m³ 
Solids volume Vf = ptg / ptg90 = 1,640 / 3,00 = 0,547 t/m³ 
Pore volume Vl = Vp - Vf = 1,0 - 0,547 = 0,453 t/m³ 
Angle tan βt = Vf / Vl = 0,547 / 0,453 = 1,207 → βt = 50,3° 
Angle tan βi = Vf / (Vl + Vw) = 0,547 / (0,453 + 0,180 /3) = 1,066 → βi = 46,8° 
 
3.  Determining the force areas and forces of the adjacent soil/substratum by means 
of height hg = 5,43 m and angle βi = 46,7°: 
Width bo = hg / tan βi = 5,43 / 1,066 = 5,09 m 
Force area Au = hg ∙ bo / 2 = 5,43 ∙ 5,09 / 2 = 13,83 m² 
Weight force Gu = Au ∙ a ∙ pig ' ∙ g = 13,83 ∙ 1,00 ∙ 1,820 ∙ 9,807 = 246,8 kN 
Force index git = Gu / hg = 246,8 / 5,43 = 45,46 kN/m² 
Force Lv = git ∙ hg ∙ a / 2 = 45,46 ∙ 5,43 ∙ 1,00 / 2 = 123,4 kN 
or Lv = hg ∙ bo ∙ a ∙ pig ∙ g / 4 = 5,43 ∙ 5,09 ∙ 1,00 ∙ 1,820 ∙ g / 4 = 123,3 kN 
Earth pressure force Lh = git ∙ bo ∙ a / 2 = 45,46 ∙ 5,09 ∙ 1,00 / 2 = 115,7 kN 
Force Lh = 115,7 kN acts against the shoring panels at height hg / 2. 
 
4.  Filling material: determination of the soil angles 
The values are taken from the previous example: 
Dry density ptg = 2,060 t/m³ and angle βt = 65,5° (tan βt = 2,195) 
Moist density pig = 2,120 t/m³ and angle βi = 64,1° (tan βi = 2,063) 
 
5.  Determining the force areas loading the pipe 
When looking at the structure of the force areas within the sewer trench in Fig. 57, 
changes due to the larger trench width are apparent. A certain assignment of the 
force areas is achievable, if one first applies the filling material's inclination plane with 
angle βi as tangent to the pipe, and takes it up to the central axis and to the trench 



 
 

37 
 

wall. By means of radius ra and angle βi = 64,1° (tan 2,063), width bm and then width 
boo as well as height hoo can be calculated. Consequently, force area Av with height 
2 hoo and width boo is formed, which acts against the trench wall. From this area, 
only the partial area with height hh and width bg' = boo  ̶  bb loads the pipe. At center, 
above the pipe, the area Am = bm ∙ hs' is formed, whereby height hs' = hd + fs. Only 
force Hv from the earth wedge hoo ∙ boo /2 acts on the pipe. 
 
Radius ra = 1,08 m and angle βi = 64,1° are used to calculate width bm (see Fig. 57). 

Height rs = ra ∙ sin βi = 1,08 ∙ 0,900 = 0,97 m 
Height fs = ra - rs = 1,08 - 0,97 = 0,11 m 
Width fr = ra ∙ cos βi = 1,08 ∙ 0,437 = 0,47 m 
Width bm = 2 ∙ fr = 2 ∙ 0,47 = 0,94 m 
Width boo = (bg - bm) / 2 = (3,40 - 0,94) / 2 = 1,23 m 
Height hoo = boo ∙ tan βi = 1,23 ∙ 2,06 = 2,53 m 
Area Aoo = boo ∙ hoo / 2 = 1,23 ∙ 2,53 / 2 = 1,56 m² 

The following force meters arise within the wedge area Aoo: 
Height nv = hoo ∙ cos² βi = 2,53 ∙ 0,191 = 0,48 m 
Height hv = hoo ∙ sin² βi = 2,53 ∙ 0,809 = 2,05 m 
Width hf = hoo ∙ sin βi ∙ cos βi = 2,53 ∙ 0,900 ∙ 0,437 = 0,99 m 
Area Aoo must be reduced by the area of the normal force, so that: 
Area Aoo' = hoo ∙ hf / 2 = 2,53 ∙ 0,99 / 2 = 1,25 m² remains. 
 
Calculation of area Av 
Av = 2 ∙ hoo ∙ boo / 2 = 2,53 ∙ 1,23 = 3,11 m², 
of which only the partial area Av' acts as a load on the pipe: 
Width bb = (bg - da) / 2 = (3,40 - 2,16) / 2 = 0,62 m 
Width boo' = boo - bb = 1,23 - 0,62 = 0,61 m 
Height hh = 2 ∙ (boo' ∙ tan βi) = 2 ∙ (0,61 ∙ 2,063) = 2,52 m 
Area Av' = boo' ∙ hh / 2 = 0,61 ∙ 2,52 / 2 = 0,77 m² 
 
Calculation of area Am 
with width bm = 0,94 m and height hs' = hd + fs = 3,02 + 0,11 = 3,13 m 
Area Am = bm ∙ hs' = 0,94 ∙ 3,13 = 2,94 m² 

Volumes Vm and Va can be determined by means of calculation depth a = 1,00 m and 
the areas, whereby their weigh forces load the pipe at different locations. 
 
6.   Determining the pipe loads 
Weight force Gm is determined first, which loads the pipe crown at width bm = 0,94 
m: 
Weight force Gs = a ∙ Am ∙ pig ∙ g = 1,0 ∙ 2,94 ∙ 2,120 ∙ 9,807 = 61,2 kN 
 
Force Gs can be used to calculate force FV, which must be applied on both sides (see 
Fig. 58). 
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Force FV = 0,5 ∙ Gs / sin βi = 0,5 ∙ 61,2 / 0,90 = 34,0 kN 
In addition, weight force Gk acts vertically and on both sides of the pipe haunches. 
Weight force Gk = a ∙ (Aoo' + Av') ∙ pig = (1,25 + 0,77) ∙ 2,120 ∙ 9,807 = 42,0 kN 
 
Result 
For the pipe DN 1800 Sb to be installed in the trench at depth hs = 5,00 m, a shored 
trench with height hg = 5,43 m and width bg = 3,40 m must be provided. The pipe is 
loaded in two locations by force FV = 34,0 kN (pipe crown), and force Gk = 42,0 kN 
(pipe haunch). 
Force dispersal under the pipe is not taken into account, because the displaced soil's 
weight with density pig = 2,120 t/m³ is higher than the pipe's own weight plus the 
weight of the water filling. 
Force Lh = 115,7 kN was calculated from the adjacent soil, which acts against the 
shoring panels at height hg / 2 = 2,72. 
 
 
3.10   Calculation example ‒ Pipe DN 1800 Sb with live load 
For the calculation, the sewer trench dimensions, the pipe dimensions, and the pro-
perties of the soil type are taken from the example in Sect. 3.8. 
Trench depth hg = 5,43 m, trench width bg = 3,40 m and outside pipe radius ra= 1,08 
m → da = 2,16 m. 
Because of the live load SLW 60 to be applied, the pipe is to be bedded in concrete.  
E = 3,33 t/m² (33,3 kN) is used as the substitute surface load. 
 
To be calculated are: 

1.   Load height he and angle βe' (Fig. 59) 
Load height he is calculated via the dry density ptg = 2,060 t/m³ of the 'granular soil'. 
This density is selected, because the moist density's water gives way under pressure 
and is therefore not available for load dispersal. 
Load height he = E / ptg = 3,33 / 2,060 = 1,62 m 
 
Due to the mostly rigid connection of pipe and bedding, it is assumed that the live 
load can only be dispersed horizontally in the area of height hd = 3,02 m (see Fig. 37, 
Sect. 2.12). Consequently, the flatter inclination angle βe' is available for force 
dispersal. As mentioned previously, the load does not change the soil's density. 
 
Angle βe is calculated via tangent βe = tan βi ∙ hd / (hd + he). 
Therefore, angle βe∙→ tan βe = 2,063 ∙ 3,02 / (3,02 + 1,62) = 1,343 → βe = 53,3° 
The dimensions rs, fs, and fr must be determined under this angle, and force FV 
applied against the pipe. 
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Fig. 59 shows the drain pipe bedded in concrete, and its force areas. 
 
2.   Determination of force areas loading the pipe 
Angle βe = 53,3° (tan βe = 1,343) 
Height rs = ra ∙ sin βe = 1,08 ∙ 0,802 = 0,87 m 
Height fs = ra - rs = 1,08 - 0,87 = 0,21 m 
Width fr = ra ∙ cos βi = 1,08 ∙ 0,598 = 0,65 m 
 
Height hd = hoo = 3,02 m 
Width boo =hd / tan βe = 3,02 / 1,343 = 2,25 m 
Height nv = hoo ∙ cos² βe = 3,02 ∙ 0,357 = 1,08 m 
Height hv = hoo ∙ sin² βe = 3,02 ∙ 0,643 = 1,94 m 
Width hf = hoo ∙ sin βe ∙ cos βi = 3,02 ∙ 0,802 ∙ 0,600 = 1,45 m 
 
Area Aoo' corresponds to the area of the downhill force, therefore: 
Area Aoo' = hoo ∙ hf / 2 = 3,02 ∙ 1,45 / 2 = 2,19 m² 
 
Calculation of area Av' 
Height hh = ra + ra ∙ tan βe = 1,08 + 1,08 ∙ 1,343 = 2,53 m 
Width bb' = hh / (tan βe + tan βi) = 2,53 / (1,343 + 2,063) = 0,74 m 
Height hho = bb' ∙ tan βe = 0,74 ∙ 1,343 = 0,99 m 
Height hhu = bb' ∙ tan βi = 0,74 ∙ 2,063 = 1,53 m 
Height hfs = hhu - rs = 1,53 - 0,87 = 0,66 m (Fig. 57) 
Width fr' =ra - rs / tan βi = 1,08 - 0,87 / 2,063 = 0,66 m 
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Area Av' = hh ∙ bb' / 2 = 2,53 ∙0,74 / 2 = 0,94 m² 
Area Am' above the pipe: 
Area Am' = 2 ∙ (hfs + fs) ∙ fr' / 2 = (0,66 + 0,21) ∙ 066 = 0,72 m² 
 
3. Determination of pipe loads 
First, weight force Gs must be determined, which loads the pipe crown at width 2 fr'= 
1,32 m: 
Weight force Gs = a ∙ (Aoo' + Am' + Aoo') ∙ pig ∙ g = 1,0 ∙ 2,94 ∙ 2,120 ∙ 9,807 = 61,2 
Weight force Gs = 1,0 ∙ (2,19 + 0,72 + 2,19) ∙ 2,120 ∙ 9,807 = 106,0 kN 
 
Force FV (which must be applied on both sides) can be calculated from force Gs. 
Force FV = 0,5 ∙ Gs / sin βe = 0,5 ∙ 106,0 / 0,802 = 66,1 kN 
Weight force Gk loads the pipe haunches on both sides and vertically. 
Weight force Gk = a ∙ Av' ∙ pig ∙ g = 1,0 ∙ 0,94 ∙ 2,120 ∙ 9,807 = 19,5 kN 
 
Result 
For the pipe DN 1800 Sb to be installed in the trench at depth hs = 5,00 m, a shored 
trench with height hg = 5,43 m and width bg = 3,40 m must be provided. The pipe is 
loaded on two sides by force FV = 66,1 kN, which is applied in the crown area with 
angle βe = 53,3°. Moreover, the pipe haunches are each loaded vertically by force Gk 
= 10,5 kN. 
Force dispersal under the pipe is not taken into account, because the displaced soil's 
weight with density pig = 2,120 t/m³ is higher than the pipe's own weight plus the 
weight of the water filling. 
Force Lh = 115,7 kN was calculated from the adjacent soil, which acts against the 
shoring panels at height hg / 2 = 2,72. 
 
 
3.11   Landslide due to changed soil properties 
A slope (embankment) can begin to slide, if its soil properties are changed by a 
substantial water absorbance or external loads. For the following example, an 
embankment with height h = 5,00 m and width bu = 7,50 m (gradient ratio 1 : 1,5) is 
selected. With a water content of Vw = 65 l/m³, the embankment soil exhibits a moist 
density of pig = 1,765 t/m³. Rain has converted the moist soil into a 'wet' soil, and has 
caused it to slide. A soil is described as 'wet' when its pores are completely filled with 
water. 
 
Properties of moist soil 
Dry density ptg = pig ‒ Vw ∙ pwg /Vp90 
ptg = 1,765 ‒ 0,065 ∙ 1,0 / 1,0 = 1,700 t/m³ 
Solids volume Vft  = ptg ∙ Vp90  / ptg90 = 1,700 ∙ 1,0 / 3,0 = 0,567 m³ 
Pore volume Vlt  = Vp90 ‒ Vft = 1,000 ‒ 0,567 = 0,433 m³ 
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Inclination angle βt of dry soil: 
tan βt = Vf / Vl = 0,567 / 0,433 = 1,309 → angle βt = 52,6° 
Inclination angle βi of moist soil: 
tan βi = Vf / (Vl + Vw ∙ pwg / ptg90) 
tan βi = 0,567 / (0,433 + 0,065 ∙ 1,0 / 3,0) = 1,247 → angle βi = 51,3° 
Shear angle si of moist soil: 
tan si = (tan βi) / 2 = 1,245 / 2 = 0,624 → angle si = 31,9° 
 
In the embankment, the shear plane of moist soil (E-L) is established. Hereby, and 
using calculation depth a = 1,00 m, the volume Ve = Ae ∙ a  on the shear plane be-
comes load (E-C-L). Simultaneously, the absorbed water changes the properties of 
moist soil, so that the shear angle is changed from si to se. 
 

 
Fig. 60 shows the embankment plane (C-L), the shear plane of moist soil (C'-Ms), and 
the shear plane of wet soil (D-M'). 
 
Properties of wet soil 
Wet density png = ptg + (Vlt ∙ pwg / Vp90) = 
Wet density png = 1,700 + (0,433 ∙ 1,00 / 1,00) = 2,133 t/m³ 
Inclination angle βn = Vf  / (Vl + Vl ∙ pwg / ptg90) 
tan βn = 0,567 / (0,433 + 0,433 ∙ 1,0 / 3,0) = 0,982 → angle βn = 44,5° 
Shear angle sn of the wet soil 
tan sn = (tan βn) / 2 = 0,982 / 2 = 0,491 → angle sn = 26,2° 
 
Calculation of the shear angle under load 
As shown in Fig. 60, load height hx /4 = 5,00 / 4 = 1,25 m must be applied above point 
D, which creates point C'. The inclination plane of the wet soil under angle βe = 44,5° 
must be applied at point D, and taken to the reference axis at point G. 
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This enables height hs = bu‧ tan βe = 7,50 ‧ 0,982 = 7,37 m to be calculated. Inclina-
tion plane of the 'wet soil under load' with height hs* = hs + hx/4 = 7,37 + 1,25 = 8,62 
m, and inclination angle βe are created from point C' up to point G. 
Angles βe and se can be calculated from tan βe = hs* / bu = 8,62 / 7,50 = 1,149 (angle 
βe3 = 49,0°) and tan se = tan βe / 2 = 1,149 / 2 = 0,575 (angle se = 29,9°). 
 
Calculation of soil weight sliding from the embankment 
It can be assumed that the soil does not loosen up where it slides down. Conse-
quently, the embankment plane ('shear plane under load') with angle se = 29,9° in-
tersects the vertical reference axis A-B at point M. The removal/filling area Al = Ar can 
then be calculated from width bll = brr and height h/2 = 5,00 /2 = 2,50 m: 

Width bll = brr = h / 2 (tan se) ‒ br = (2,5 / 0,575) - 3,75 = 0,60 m 
Area Al = Ar = brr ∙ h / 4 = 0,60 ∙ 5,00 / 4 = 0,75 m² 
 

 
Fig. 61 shows the embankment plane (C-L), shear plane of moist soil (E-L), and shear 
plane of wet soil (C’-H’). 
 
Result 
The assumed water absorbance of the embankment soil causes an embankment 
slide, resulting in the 'shear plane under load' with shear angle se = 29,9°. Moreover, 
per 1,00 m embankment length, wet soil from area Al will slide into area Ar = 0,75 
m², thereby forming the wet soil’s shear plane. This, and other calculations in the 
'Earth Pressure Study’ and in the book, show that embankment slides & landslides 
can be calculated in advance. 
 
 
3.12    Landslide due to excavation at the slope toe 
This section is based on the photo in Fig. 62 and an expert opinion from the Dresden 
University that describes the depicted soil movement in the embankment as the re-
sult of 'inadequate soil compaction'. The following calculation shows that the expert 
seems to have relied on 'gut feeling' rather than taking the real facts into account. 
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Because the actual soil properties of the embankment are unknown to me, my cal-
culation is based on my long experience in earthworks and road construction as well 
as the facts revealed by the photo. 
 

 
Fig. 62 shows the embankment slide due to faults in the slope toe. 

 
The following assumptions are made for the calculation: 
Embankment height h = hx = 5,00 m, slope width bu = 7,50 m, and slope inclination 1 
: 1,5. 
Height hf = 1,40 m, the widths bff = 2,00 m, bf = 1,50 m, and bs = 0,50 m of the fault 
area Af were measured in an enlargement of the photo. 
The same properties are assigned to the soil, as determined in Sect. 3.11 for a moist 
soil: βi = 51,3° (tan βi = 1,247) and si = 31,9° (tan si = 0,624). 
First of all, to investigate the soil behaviour due to the fault at the slope toe, the earth 
block (C-A-B-D), the soil type above height hx = 5,00 m, and the angles βi and si are 
created. From this earth block, the soil is allowed to slide down along the shear plane 
of moist soil. This procedure is shown as force wedge (D-H-G), whereby wedge area 
(C-A-M) is seen as the load on the shear plane (D-H) (see Fig. 63). If the load with hx 
/ 4 is applied above point D, the 'inclined plane under load' (C-G) and the 'shear plane 
under load' (C-H') become apparent. 
 
Height hs = bu ‧ tan βi = 7,50 ‧1,247 = 9,35 m and height hs* = hs + hx / 4 = 9,35 + 
1,25 = 10,60 m can be calculated by means of embankment width bu = 7,50 m and 
inclination angle βi. The 'angles under load' βe and se can be determined: 

Angle βe  →  tan βe = hs* / bu = 10,60 / 7,50 = 1,413 → βe = 54,7° 
Angle se  →  tan se = tan βe / 2 = 1,413 / 2 = 0,707  → se = 35,2° 

To determine the void volume at the slope toe after the landslide, angle βc of the 
embankment slope L'‒F as well as shear angle sx must be calculated (see Fig. 63): 

Angle βc →  tan βc = hf / (bff ‒ bf) = 1,40 / (2,00 - 1,50) = 2,800 → 
Angle βc = 70,3° 
Shear angle sx  →  tan sx = h / bu = 5,00 / 7,50 = 0,667 → angle sx = 33,7°. 
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Fig. 64 
 

Fig. 63 shows the values for calculating the angles. 
Fig. 64 shows the values for calculating the dispersal and load weights. 
 
Calculation of soil movement in the slope 
To fill the void at the slope toe and to stabilize the embankment, the soil in the slope 
has slipped along the determined shear angle se = 35,2° (tan se = 0,707). 
To be calculated in the following are width bb of the fracture in the slope, and the 
areas of load and dispersal Al and Ar. 
Width bb = hy / 2 (tan se - tan sx) = hy / 2 (0,707 - 0,667) = 12,5 hy 
Area Al = 12,5 hy² / 2 = 6,25 hy² 
Area Ar = hc² / (2 tan se) ‒ hc² / (2 tan βc) 
Area Ar = hc² / (2 ‧ 0,707) ‒ hc² / (2 ‧2,800) 
Area Ar = 0,707 hc² ‒ 0,179 hc² = 0,528 hc² 
Height hc = hs - hy = 1,33 ‒ hy 
Height hy via area Ar = Ar 
6,25 hy² = 0,528 hc² = 0,528 ‧ (1,33 - hy)² 
2,5 hy = 0,727 ‧ (1,33 - hy)² 
2,5 hy - 0,967 + 0,727 hy = 0 
hy = 0,967 / 3,23 = 0,30 m 
 
Height hc = hs - hy = 1,33 - 0,30 = 1,03 m 
Width cc = hc / tan se - hc / tan βc 
Width cc = 1,03 / 0,707 - 1,03 / 2,800 = 1,09 m 
Area Al = hy ‧ bb / 2 = hy ‧ 12,5 hy / 2 = 
Area Al = 0,30² ‧ 12,5 / 2 = 0,56 m² 
Area Ar = hc ‧ cc / 2 = 1,03 ‧ 1,09 / 2 = 0,56 m² 
Width bb via: 
hy / 2 (tan se - tan sx) = 12,5 hy 
bb = 12,5 hy = 12,5 ‧ 0,30 = 3,75 m 

Fig. 63 
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Width bs = bb + bff = 3,75 + 2,00 = 5,75 m 
Width bue = h / tan si = 5,00 / 0,624 = 8,01 m 
Width bl = bue ‒ bu = 8,01 ‒ 7,50 = 0,51 m 
 
Result 
By means of the calculated fracture width bs = 5,75 m, which coincides with that in 
the photo (see Fig. 62), it can be proved that the slope has slipped due to void at the 
slope toe. Consequently, the expert opinion of the Dresden University, that 'in-
adequate soil compaction' was the cause of soil slippage in the embankment, must 
be questioned. 
 
 
3.13   'Earth pressure tutorial' of the TUM ‒ Part 1: Soil properties 
The Center for Geotechnics at the Technical University Munich (TUM) published the 
'Übung Erddruck' (Earth pressure tutorial) as Paper L. It shows an example of stress 
behaviour of soils under water. The tutorial's purpose and the properties of the cor-
respondingly selected soil types (sand and clay) are described in Bild L-4. Shown on 
page 4 of the Paper are the earth stresses σ’zz and σ’xx as well as the total stresses for 
the soils at rest, which are partially under water. To reconstruct the tutorial, the task 
of determining earth pressure and the graphical representation of the horizontal 
stress in Bild L-4 will be copied and summarized. 
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Bild L-4: Substratum and stress determination of the Center for Geotechnics at the TUM 
 
The 'Earth pressure tutorial' is used to illustrate the differences between stress cal-
culation according to current teachings and force determination according to the 
new teachings. The first thing that comes apparent, is that task to be carried out in 
the tutorial does not state for which application the stresses are to be determined. 
This information would be helpful, because with supporting walls the adjacent water 
contributes to load dispersal, whilst in the case of piles, the moist density's water 
gives way under pressure and is therefore not available for load dispersal. 
 
In the substratum diagram, soils whose properties are determined considerably by 
the water are shown above and below the groundwater level. But there is no in-
formation about the water absorbed by the respective soil type. Therefore, to find a 
common denominator for the soil properties to start with, the densities and in-
clination angles of sand and clay are calculated according to the new teachings. 
 
Properties of the sand 
Specified for the sand are density γ = 18 kN/m³ and angle ϕ' = 32,5°. By means of 
density and angle, it is possible to determine the sand's state: dry, moist or wet. 
 
a)   Dry sand 
Density ptg = γ / g = 18 / 9,807 = 1,835 t/m³ → (y = 18,0 kN/m³) 
Solids volume Vf = Vp ‧ ptg / ptg90 = 1,00 ‧ 1,835 / 3,00 = 0,612 m³ 
Pore volume Vl = Vp - Vf = 1,000 - 0,612 = 0,388 m³ 
Inclination angle βt =   →   tan βt = Vf / Vl = 0,612 / 0,388 = 1,577 → β = 57,6°→ 
Angle α = ϕ = 90,0°– 57,6° = 32,4° 
 
The calculation reveals that for stress determination, the current teachings use dry 
density γ = 18 kN/m³ above and below the groundwater level, although water chan-
ges the angle α = 32,5° (ϕ‘, ϕ). There is no explanation, why the soil mobilization 
usually required by the current teachings, and indicated by angle ϕ', is considered to 
be superfluous for sand. 
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b)   Moist sand 
Observations show that soils near the adjacent groundwater must be classified as 
moist or wet. For the comparison calculation, moist sand is assumed above the 
groundwater level, whose pores are filled 60 % with water. 
 
Moist density pig = (Vf ‧ 3,0 + 0,6 ‧ Vl ‧ pwg) / Vp = 0,612 ‧ 3,0 + 0,6 ‧ 0,388 ‧ 1,0 = 
pig = 2,068 t/m³ 
Angle βi   →   tan βi = Vf / (Vl + Vli ‧pwg / ptg90) = 0,612 / (0,388 + 0,233 ‧1,0 / 3,0) = 
1,314, therefore inclination angle βi = 52,7°. 
 
c)   Wet sand 
Wet sand would appear above the groundwater level, if water can penetrate into all 
pores of the sand: 
Volume of a soil cube Vp = 1,00m³ 
Wet density png = ptg + Vl ‧ pwg / Vp = 1,835 + 0,388 ‧ 1,0 / 1,0 = 2,223 t/m³ 
Angle βn   →   tan βn = Vf / (Vl + Vl ‧pwg / ptg90) = 0,612 / (0,388 + 0,388 ‧1,0 / 3,0) 
= 1,183, therefore inclination angle βn = 49,8°. 
 
d)  Wet sand under water 
With wet soil under water, the pore water pressure with volume Vln = Vl ∙ pwg / 
ptg90∙= Vl /3 is superposed by the contrarily-acting hydrostatic water pressure, 
whereby volume Vnw = Vl /2 is assigned to the latter. Due to the hydrostatic uplift, 
the solids volume Vf is divided into volume Vfa with the water's density, and volume 
Vfw with the rocky ground's density. 

Consequently: 
Volume Vfa = 1 ∙ Vf ∙ pwg / ptg98 = 1 ∙ 0,612 ∙ 1,0 / 3,00 = 0,204 m³ 
Volume Vfw = 2 ∙ Vf ∙ pwg / ptg98 = 2 ∙ 0,612 ∙ 1,0 / 3,00 = 0,408 m³ 
Inclination angle βnw   →   tan βnw = Vfw / (Vl + Vl / 3 ‒ Vl / 2) = 0,408 / 0,323 = 
1,263, therefore inclination angle βnw = 51,6°. 
Density pnwg = [0,408‧ 3,0 + (0,388 ‒ 0,388 / 6)‧ 1,0] / 1,0 = 1,547 t/m³, 
or y = 15,17 kN/m³. 
 
Properties of the clay 
For the clay, the teachings specify wet density γ = 20,0 kN/m³ and dry density γ = 
10,0 kN/m³, and indicated an angle ϕ' = 17,5°. If one applies the density specifi-
cations, the wet clay must have absorbed 10 kN of water. Therefore, the solids and 
pore volumes each account for 0,5 m³ of the soil cube with volume Vp = 1,00 m³. 
 
a)  Wet clay  
Wet density png = y / g = 20,0 / 9,807 = 2,040 t/m³ 
Solids volume Vf can be calculated from the wet density: 
png = (ptg90 ‧ Vf + Vl ‧ pwg) / Vp = (3,0 ‧ Vf + Vl ‧ 1,00) / 1,00 = 2,040 t/m³, 
or wet density y = 20,0 kN/m³ 
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Solids volume Vf = (png - Vl) / 3 = (2,040 - 0,500) / 3 = 0,513 m³ 
Pore volume Vl = Vp - Vf = 1,000 - 0,513 = 0,487 m³ 
Angle βn   →   tan βn = Vf / (Vl + Vl ‧pwg / ptg90) = 0,513 / (0,487 + 0,487 ‧1,0 /3,0) 
= 0,790, therefore inclination angle βn = 38,3°. 
 
b)  Wet clay under water  
Volume Vfa = 1 ∙ Vf ∙ pwg / ptg98 = 1 ∙ 0,513 ∙ 1,0/ 3,00 = 0,171 m³ 
Volume Vfw = 2 ∙ Vf ∙ pwg / ptg98 = 2 ∙ 0,513 ∙ 1,0 / 3,00 = 0,342 m³ 
Inclination angle βnw   →   tan βnw = Vfw / (Vl + Vl / 3 ‒ Vl / 2) = 
Inclination angle βnw   →   tan βnw = 0,342 / (0,487 + 0,487 / 6) = 0,602 → 
Inclination angle βnw = 31,0°. 
Wet density pnwg = [0,342‧ 3,0 + (0,487 ‒ 0,487 / 6)‧ 1,0] / 1,0 = 1,432 t/m³, 
or y = 14,04 kN/m³. 
 
Result of the soil properties 
For force determination according to the new teachings, the following densities and 
angles were calculated: 

a) Above the water level 
Sand density pig = 2,068 t/m³ (y = 20,28 kN/m³) and angle βi = 52,7° (tan βi = 1,314). 

b) For 'wet sand under water': 
Density pnwg = 1,547 t/m³ (y = 15,17 kN/m³), angle βnw = 51,6° (tan βnw = 1,263). 

c) For 'wet clay under water': 
Density pnwg = 1,432 t/m³ (y = 14,04 kN/m³), angle βnw = 31,0° (tan βnw = 0,602). 
 
The volumes for wet sand and clay under water are shown in Figs. 65 and 66. 
 

   
Fig. 65 shows the 'soil band' of the wet sand under water 
Fig. 66 shows the 'soil band' of the clay under water 
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3.14   'Earth pressure tutorial' of the TUM ‒ Part 2: Earth pressure (elevation 0,00 
up to -7,00 m) 
The results of stress determination by the Center for Geotechnics at the TUM are 
shown in Bild L-4. However, the task here is to determine the forces against a 
perpendicular wall by means of the new teachings, and to compare the results with 
the stresses determined by the TUM. Hereby, the real soil densities (solids plus 
water) and inclination angle are used for force determination. First of all, a standing 
earth wedge with height h = 7,00 m must be constructed. The wedge widths are 
calculated via the partial heights and the inclination angle of the adjacent soil. Finally, 
a fictive earth wedge is formed via the sum of all partial areas, by means of which 
the force can be determined. 
 
Widths of the earth wedge: 
Elevation -7,00 m up to -5,00 m   →   βnw = 31,0°   →   tan βnw = 0,602 
bo1 = h1 / tan βnw = 2,0 / 0,602 = 3,32 m 
Elevation -5,00 m up to -3,00 m   →   βnw = 51,6°   →   tan βnw' = 1,263 
bo2 = bo1 + h2 / tan βnw = 3,32 + 2,0 / 1,263 = 3,32 + 1,58 = 4,90 m 
Elevation -3,00 m up to -0,00   →   βi = 52,7°  →   tan βi = 1,314 
bb = bo3 = bo2 + h3 / tan βi = 4,90 + 3,0 / 1,314 = 4,90 + 2,28 = 7,18 m 
 
Areas of the earth wedge: 
Ao1 = h1 ‧bo1 / 2 = 2,0 ‧ 3,32 / 2 = 3,32 m² 
Ao2 = h2 ‧ (bo1 + bo2) /2 = 2,0 ‧ (3,32 + 4,90) / 2 = 8,22 m² 
Ao3 = h3 ‧ (bo2 + bo3) /2 = 3,0 ‧ (4,90 + 7,18) / 2 = 18,12 m² 
∑Ao = Ao1 + Ao2 + Ao3 = 3,32 + 8,22 + 18,12 = 29,66 m² 
 
Fictive earth wedge: 
Wedge width bb = 2 ‧ ∑Ao / h = 2 ‧ 29,66 / 7,0 = 8,47 m 
Angle βm =   →   tan βm = ∑h / bb = 7,00 / 8,47 = 0,826   →   βm = 39,6° 
Determination of weight forces with calculation depth a = 1,00 m 
G1 = Ao1 ‧ ptwg* ‧ g = 3,32 ‧1,432 ‧ 9,807 = 46,6 kN 
G2 = Ao2 ‧ptwg' ‧ g = 8,22 ‧ 1,547 ‧ 9,807 = 124,7 kN 
G3 = Ao3 ‧pig ‧ g = 18,12 ‧ 2,068 ‧ 9,807 = 367,5 kN 
Weight force GG = G1 + G2 + G3 = 46,6 + 124,7 + 367,5 = 538,8 kN 
Soil density pmg = GG / ∑Ao = 538,8 / 29,66 = 18,166 kN/m³   →   1,852 t/m³ 
 
Earth pressure calculation 
Using weight force GG = 538,8 kN and inclination angle βm = 39,6° 
Force index gm = GG / h = 538,8 / 7,00 = 76,97 kN/m 
Normal force FN = GG ‧ cos 39,6° = 538,8 ‧ 0,771 = 415,4 kN 
(force meter fn = FN / gm = 415,4 / 76,97 = 5,40 m) 
Downhill force FH = 538,8 ‧sin 39,6° = 343,4 kN 
(force meter fh = FH / gm = 343,4 / 76,97 = 4,46 m) 
Earth pressure force Hf = 538,8 ‧ sin 39,6°‧ cos 39,6° = 264,6 kN 
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(force meter hf = Hf / gm = 264,6 / 76,97 = 3,44 m)                    (force meter 'K-m') 
Force Nv - vertical portion FN = 538,8 ‧ cos² 39,6° = 319,9 kN     (K-m nv = 4,16 m) 
Force Hv - vertical portion FH = 538,8 ‧ sin² 39,6° = 219,9 kN      (K-m hv = 2,84 m) 
 
Earth pressure force Hf = 264,6 kN acts against the fictive wall at height hv = 2,84 m. 
 

             
 

Fig. 67 shows the stresses of the soil under water according to the current teachings, 
whereby the number values are claimed to correspond to the total stresses. 
Fig. 68 shows the force meter within the earth wedge according to the new teachings with 
h = 7,00 m, whereby earth pressure force Hf = 264,6 kN acts against the wall at height hv = 
2,84 m above the basal plane. 
 
Comparison of moments 
Moment Mb' of the current teaching is calculated via the total stresses according to 
Bild L-4, whereby it must be noted that demonstrably no horizontal stresses occur 
in the basal planes (elevations -3, -5 and -7): 
 
Moment Mb' = 3,0 ‧ 25,0 ‧ (7,0 - 2,0) /2 + (25,0+54,3) ‧ 3,0 + (71,8 + 105,8) ‧ 1,0 
Moment Mb' = 187,5 + 237,9 + 177,6 = 603,0 kNm 
 
Moment already determined according to new teachings 
Moment Mb = Hf ‧ hv = 264,6 ‧ 2,84 = 751,5 kNm 
 
Result 
In summary, it can be said that there is a difference of MB* = 751,5 - 603,0 = 148,5 
kNm between moments Mb = 751,5 kNm and Mb' = 603,0 kN, leading to the wall 
being underdimensioned by about 24,0 %. 
 
Should the 'Supporting wall' project be implemented according to the TUM's spe-
cifications, a damage event would occur due to the wall's obvious underdimen-
sioning. And once again, geologists and planners would state: "for stress deter-
mination, we observed the specifications in the teachings". The construction 



 
 

51 
 

company would refer to their expertise and that they applied the relevant standards. 
Subsequently, the assessors and chief assessors would carry out disputes. And finally, 
the media would report about the incompetence of construction workers and 
botched-up building projects. 
 
 
4    Summary 

The 'New Earth Pressure Teachings' are based on the findings that soils in free nature 
form active and inactive soil bodies, and that the properties of all soils can be 
calculated. For force/stress determination, two different calculation systems are 
available, which are arranged along the position of the center of gravity in the soil 
body. It was found that 'standing earth wedges' with the center of gravity at 2/3 of 
the height must be seen as active, and 'lying earth wedges' with the center of gravity 
in the lower third as inactive (see Sect. 2.1 'Operation of an hourglass'). 
 
Moreover, the properties of soils can be calculated precisely, regardless of whether 
they are in the dry, moist or wet state, or are under water. Consequently, the 
previous use of empiric soil characteristics is superfluous. 
 
Except for a small addition to load dispersal, Coulomb's 'Classical earth pressure 
teachings', which use the 'physical plane' for force determination, remain valid. With 
the introduction of 'earth blocks', that can be combined like building bricks for a 
calculation task, every construction project can be computed, and soil overloads due 
to the building structures are excluded. 

With the "Mohr-Coulomb fracture condition" and "Mohr's stress circle", the current 
teachings show that they want to use the 'physical plane' for force determination in 
their calculation method. Therefore, they first determine the weight force from the 
soil's own weight via the 'standing earth wedge', but then conclude that in addition 
to the weight force, "the size and direction of shear deformation in the soil must be 
taken into account", and therefore insert force Q into the inclination/friction plane. 
[1: P; S. P.2, Pict. P01.40]. 
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Pict. P05.50 Section and force polygon … 

Moreover, the current teachings are oriented along the water's stress diagram, and 
therefore rotate  the active 'standing' earth wedge into the inactive 'lying' wedge 
(Pict. P05.50) in order to prove horizontal stress in the basal plane (Pol-Z). As dem-
onstrated with the hourglass, rotation of the soil body through 180° causes a tran-
sition into a different calculation system. By means of auxiliary constructs such as 
wall friction forces, unequal vectors (δx and δz), creating horizontal stresses, and 
earth pressure factors, the current teachings attempt to prove the correctness of 
their stress determination. But none of these measures are supported by the accep-
ted rules of physics 
 

 

If Pict. I01.70 of Mohr's stress circle is 
rotated back again, the force relation-
ships of a 'standing' earth wedge are 
created again. 
 
Consequently, weight force G adopts 
plane (Z–X), normal force FN adopts 
plane (Z–Pol), downhill force FH adopts 
plane (Pol) -X), and earth pressure force 
Hf acts horizontally at height (Pol).  

 
Conclusion 
Current earth pressure teachings abandon the calculation specifications according to 
Coulomb's 'Classical earth pressure teachings' and the 'physical plane', and adapt the 
soil's stress behaviour to the behaviour of water. Hereby, the teachings fail to see 
that soils are decomposition products of rocky ground, and their properties in the 
dry state are derived from the interaction of solid particles and pore formation. 
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Furthermore, stress determinations according to current earth pressure teachings 
reveal that the two contrary calculation methods – which must be applied for 'stan-
ding' and 'lying' earth wedges – are unknown to them (see Para. 2.1, Fig. 1, and Sect. 
2.4, Figs. 9 and 10). As both calculation methods follow the pure basics of physics, 
and the current earth pressure teachings have abandoned the physical basis for their 
stress determination, in my opinion it is reasonable to speak of 'misinterpretations' 
in the current teachings. 
 
The consequences of these misinterpretations are shown in Pict. I01.70 for 'Mohr's 
stress circle'. Originally, weight force G was determined from a 'standing' earth 
wedge (Pict. P05.50), and subsequently the stresses/forces rotated into a 'lying' 
earth wedge. If the stresses/forces (X–Z–Pol) of Mohr's stress circle are rotated back 
into their initial position (Z–X–Pol), it can be seen that no stress/force corresponds 
to the calculated stresses in the 'standing' earth wedge; neither in size nor direction. 
 
If damage to structures subjected to soil pressures, such as supporting walls, under-
ground pipes, and subsidence of structures is to be prevented in future, the spe-
cifications for stress calculation used in the current teaching must be given up, and 
Coulomb's 'Classical earth pressure teachings' applied once again 
 
There is justified hope that this concise version of the New Earth Pressure Teachings 
can trigger a new start in the calculation of earth pressures.   
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